organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy­pyridinium p-toluene­sulfonate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jinyunihao@yahoo.cn

(Received 16 April 2012; accepted 3 May 2012; online 12 May 2012)

In the title molecular salt, C5H6NO+·C7H7O3S, the cations and anions are connected by N—H⋯O and O—H⋯O hydrogen bonds, forming [100] chains.

Related literature

For general background on ferroelectric frameworks, see: Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2009[Zhang, W., Li-Zhuang, C., Xiong, R.-G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S. D. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For related salts containing p-toluene­sulfonate anions, see: Helvenston et al. (2006[Helvenston, M. C., Nesterov, V. N. & Jenkins, H. J. (2006). Acta Cryst. E62, o2339-o2341.]); Collier et al. (2006[Collier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498-505.]); Koshima et al. (2001[Koshima, H., Hamada, M., Yagi, I. & Uosaki, K. (2001). Cryst. Growth Des. 1, 467-471.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6NO+·C7H7O3S

  • Mr = 267.29

  • Orthorhombic, P b c a

  • a = 10.293 (2) Å

  • b = 14.484 (3) Å

  • c = 15.708 (3) Å

  • V = 2341.8 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.489, Tmax = 1.000

  • 23178 measured reflections

  • 2688 independent reflections

  • 2239 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.111

  • S = 1.09

  • 2688 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.89 (4) 1.66 (4) 2.523 (2) 160 (3)
N1—H1D⋯O4i 0.86 1.86 2.704 (2) 166
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several crystal structures of p-toluenesulfonate have been reported previously (Helvenston et al., 2006; Collier et al., 2006; Koshima et al., 2001). As an extension of this research, we report here the synthesis and the crystal structure of the title complex.

Until now, researchers have found that molecular motion can cause a rotation of the local structure to give rise to the formation of reversible structural phase transition from high-temperature disordered fashion to low temperature ordered fashion. Reversible structural phase transition is caused by many kinds of factors. Hydrogen-bonding interactions come to be the most common factor. Transition for hydrogen-bonding interactions from high-temperature disordered state to low temperature ordered state allows reversible structural phase transition. The compound reported here could have a tendency to hold such transition as a result of numerous hydrogen-bonding interactions in its crystal structure. The transition from the disordered arrangement to the ordered one gives rise to sharp change in the physical properties of these compounds. Only few compounds in which the components can be arranged in a disordered status at a relative high temperature and in an ordered one at a relative low temperature have been found until now (Zhang et al., 2008, 2009, 2010). As part of our search for simple ferroelectric compounds we have investigated the title compound and report its room temperature structure.

The asymmetric unit, containing one anion and one cation, is shown in Fig. 1 with the hydrogen bonds listed in Table 1. The compound remains stable as a result of the existence of numerous hydrogen-bonding interactions formed in the crystal. These interactions tie the cations and anions together in a complex spatial geometry (Fig. 2).

Related literature top

For general background on ferroelectric frameworks, see: Zhang et al. (2008, 2009, 2010). For related salts including p-toluenesulfonate anions, see: Helvenston et al. (2006); Collier et al. (2006); Koshima et al. (2001).

Experimental top

C5H6ON+.C7H7O3S- was formed from a mixture of C5H5ON (95.1 mg, 1.00 mmol), C7H7SO3H (172 mg, 1.00 mmol), and distilled water (5 mL), which was stirred a few minutes at room temperature, giving a clear transparent solution. After evaporation for a few days, block colourless crystals suitable for X-ray diffraction were obtained in about 71% yield and filtered and washed with distilled water.

Refinement top

H atoms bound to C and N atoms were placed at idealized positions [C—H = 0.93–0.96 Å, N—H = 0.86 Å] and allowed to ride on their parent atoms with Uiso = 1.5 Ueq(C1) for the methyl group and Uiso = 1.2 Ueq(carrier atom) otherwise. Hydroxyl H atom was found in a difference map and refined freely.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound viewed along the c axis. Intermolecular interactions are shown as dashed lines.
2-Hydroxypyridinium p-toluenesulfonate top
Crystal data top
C5H6NO+·C7H7O3SF(000) = 1120
Mr = 267.29Dx = 1.516 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3450 reflections
a = 10.293 (2) Åθ = 6.2–55.3°
b = 14.484 (3) ŵ = 0.28 mm1
c = 15.708 (3) ÅT = 293 K
V = 2341.8 (8) Å3Block, colourless
Z = 80.3 × 0.3 × 0.2 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2688 independent reflections
Radiation source: fine-focus sealed tube2239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1313
Tmin = 0.489, Tmax = 1.000k = 1818
23178 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0362P)2 + 1.2062P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2688 reflectionsΔρmax = 0.26 e Å3
169 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0347 (16)
Primary atom site location: structure-invariant direct methods
Crystal data top
C5H6NO+·C7H7O3SV = 2341.8 (8) Å3
Mr = 267.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.293 (2) ŵ = 0.28 mm1
b = 14.484 (3) ÅT = 293 K
c = 15.708 (3) Å0.3 × 0.3 × 0.2 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2688 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2239 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 1.000Rint = 0.075
23178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.26 e Å3
2688 reflectionsΔρmin = 0.41 e Å3
169 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5889 (2)0.09901 (16)0.81599 (13)0.0461 (6)
H1A0.63820.04530.83150.069*
H1B0.49890.08900.82910.069*
H1C0.62030.15140.84730.069*
C20.6034 (2)0.11654 (13)0.72297 (12)0.0322 (4)
C30.5108 (2)0.08731 (14)0.66618 (13)0.0356 (5)
H30.43650.05800.68620.043*
C40.52611 (19)0.10060 (14)0.58087 (12)0.0335 (5)
H40.46250.08040.54310.040*
C50.63523 (18)0.14370 (13)0.55080 (12)0.0277 (4)
C60.72725 (19)0.17508 (14)0.60638 (12)0.0318 (4)
H60.80070.20550.58630.038*
C70.7102 (2)0.16122 (13)0.69220 (13)0.0342 (5)
H70.77280.18270.73010.041*
C80.53344 (18)0.14460 (13)0.19333 (12)0.0309 (4)
C90.65239 (19)0.10354 (14)0.20266 (13)0.0352 (5)
H90.68900.09610.25640.042*
C100.7158 (2)0.07393 (14)0.13220 (14)0.0401 (5)
H100.79700.04640.13780.048*
C110.6624 (2)0.08387 (17)0.05305 (14)0.0446 (5)
H110.70520.06220.00490.054*
C120.5470 (2)0.12556 (16)0.04656 (14)0.0424 (5)
H120.50970.13420.00680.051*
N10.48537 (16)0.15481 (12)0.11587 (10)0.0344 (4)
H1D0.41120.18140.11010.041*
O10.45846 (14)0.17554 (12)0.25338 (10)0.0446 (4)
H10.498 (3)0.167 (2)0.303 (2)0.095 (12)*
O20.53381 (14)0.17679 (12)0.40618 (9)0.0477 (4)
O30.70545 (15)0.06576 (10)0.41196 (9)0.0426 (4)
O40.75191 (14)0.22574 (10)0.42828 (8)0.0397 (4)
S10.65917 (5)0.15323 (3)0.44102 (3)0.03132 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0660 (16)0.0449 (13)0.0273 (11)0.0031 (11)0.0006 (10)0.0002 (9)
C20.0433 (11)0.0285 (10)0.0247 (9)0.0050 (8)0.0003 (8)0.0014 (7)
C30.0343 (11)0.0397 (11)0.0326 (10)0.0038 (9)0.0056 (9)0.0006 (9)
C40.0306 (10)0.0415 (11)0.0286 (10)0.0020 (8)0.0021 (8)0.0025 (9)
C50.0277 (9)0.0317 (10)0.0238 (9)0.0053 (7)0.0003 (7)0.0008 (7)
C60.0293 (10)0.0340 (10)0.0322 (10)0.0016 (8)0.0004 (8)0.0006 (8)
C70.0358 (11)0.0358 (10)0.0310 (10)0.0011 (8)0.0075 (8)0.0037 (8)
C80.0290 (10)0.0348 (10)0.0290 (10)0.0036 (8)0.0013 (8)0.0003 (8)
C90.0335 (11)0.0398 (11)0.0321 (10)0.0004 (8)0.0045 (8)0.0026 (9)
C100.0370 (11)0.0381 (11)0.0451 (12)0.0086 (9)0.0020 (9)0.0002 (10)
C110.0507 (13)0.0492 (13)0.0338 (11)0.0092 (11)0.0069 (10)0.0043 (10)
C120.0469 (13)0.0534 (13)0.0269 (10)0.0036 (10)0.0019 (9)0.0005 (10)
N10.0289 (8)0.0432 (10)0.0309 (9)0.0013 (7)0.0033 (7)0.0022 (7)
O10.0335 (8)0.0702 (11)0.0302 (8)0.0100 (7)0.0000 (6)0.0018 (8)
O20.0349 (8)0.0804 (12)0.0276 (7)0.0126 (8)0.0024 (6)0.0046 (8)
O30.0529 (9)0.0417 (9)0.0331 (8)0.0064 (7)0.0033 (7)0.0075 (6)
O40.0386 (8)0.0428 (8)0.0377 (8)0.0030 (6)0.0099 (6)0.0051 (7)
S10.0296 (3)0.0402 (3)0.0241 (3)0.0057 (2)0.00163 (18)0.0007 (2)
Geometric parameters (Å, º) top
C1—C21.491 (3)C8—N11.322 (2)
C1—H1A0.9600C8—C91.369 (3)
C1—H1B0.9600C9—C101.355 (3)
C1—H1C0.9600C9—H90.9300
C2—C71.364 (3)C10—C111.367 (3)
C2—C31.373 (3)C10—H100.9300
C3—C41.363 (3)C11—C121.336 (3)
C3—H30.9300C11—H110.9300
C4—C51.369 (3)C12—N11.330 (3)
C4—H40.9300C12—H120.9300
C5—C61.366 (3)N1—H1D0.8600
C5—S11.7474 (19)O1—H10.89 (4)
C6—C71.374 (3)O2—S11.4425 (15)
C6—H60.9300O3—S11.4284 (15)
C7—H70.9300O4—S11.4333 (16)
C8—O11.299 (2)
C2—C1—H1A109.5O1—C8—C9127.14 (19)
C2—C1—H1B109.5N1—C8—C9118.81 (18)
H1A—C1—H1B109.5C10—C9—C8118.75 (19)
C2—C1—H1C109.5C10—C9—H9120.6
H1A—C1—H1C109.5C8—C9—H9120.6
H1B—C1—H1C109.5C9—C10—C11121.1 (2)
C7—C2—C3118.42 (18)C9—C10—H10119.5
C7—C2—C1120.61 (19)C11—C10—H10119.5
C3—C2—C1120.97 (19)C12—C11—C10118.3 (2)
C4—C3—C2120.99 (19)C12—C11—H11120.8
C4—C3—H3119.5C10—C11—H11120.8
C2—C3—H3119.5N1—C12—C11120.4 (2)
C3—C4—C5119.90 (18)N1—C12—H12119.8
C3—C4—H4120.0C11—C12—H12119.8
C5—C4—H4120.0C8—N1—C12122.64 (18)
C6—C5—C4120.00 (18)C8—N1—H1D118.7
C6—C5—S1120.44 (15)C12—N1—H1D118.7
C4—C5—S1119.49 (15)C8—O1—H1109 (2)
C5—C6—C7119.34 (19)O3—S1—O4112.53 (9)
C5—C6—H6120.3O3—S1—O2112.76 (10)
C7—C6—H6120.3O4—S1—O2111.68 (10)
C2—C7—C6121.31 (18)O3—S1—C5107.00 (9)
C2—C7—H7119.3O4—S1—C5106.83 (9)
C6—C7—H7119.3O2—S1—C5105.48 (9)
O1—C8—N1114.05 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.89 (4)1.66 (4)2.523 (2)160 (3)
N1—H1D···O4i0.861.862.704 (2)166
O1—H1···S10.89 (4)2.73 (4)3.6139 (18)169 (3)
N1—H1D···S1i0.862.753.4747 (18)143
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H6NO+·C7H7O3S
Mr267.29
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.293 (2), 14.484 (3), 15.708 (3)
V3)2341.8 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.489, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
23178, 2688, 2239
Rint0.075
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.111, 1.09
No. of reflections2688
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.41

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.89 (4)1.66 (4)2.523 (2)160 (3)
N1—H1D···O4i0.861.862.704 (2)166.1
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

The author thanks Southeast University for support.

References

First citationCollier, E. A., Davey, R. J., Black, S. N. & Roberts, R. J. (2006). Acta Cryst. B62, 498–505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHelvenston, M. C., Nesterov, V. N. & Jenkins, H. J. (2006). Acta Cryst. E62, o2339–o2341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoshima, H., Hamada, M., Yagi, I. & Uosaki, K. (2001). Cryst. Growth Des. 1, 467–471.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Li-Zhuang, C., Xiong, R.-G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds