metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m761-m762

9-Amino­acridinium bis­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)ferrate(III) tetra­hydrate

aDepartment of Chemistry, Ferdowsi University of Mashhad, 917791436 Mashhad, Iran, and bLaboratory of Chemical Crystallography and Biocrystallography, Department of Physical Chemistry, Rudjer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
*Correspondence e-mail: mirzaeesh@um.ac.ir

(Received 10 April 2012; accepted 5 May 2012; online 12 May 2012)

The asymmetric unit of the title compound, (C13H11N2)[Fe(C7H3NO4)2]·4H2O, contains a 9-amino­acridinium cation, one anionic complex and four uncoordinated water mol­ecules. In the anionic complex, the FeIII ion is six-coordinated by two almost perpendicular [dihedral angle = 88.78 (7)°] pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral geometry. In the crystal, anions are connected into chains along [10-1] by weak C—H⋯O inter­actions, which create ten-membered hydrogen-bonded R22(10) rings. These chains are linked by three-membered water clusters. The final three-dimensional network is constructed by numerous inter­molecular O—H⋯O and N—H⋯O inter­actions.

Related literature

For background to supra­molecular chemistry, see: Lehn (2002[Lehn, J.-M. (2002). Proc. Natl Acad. Sci. USA, 99, 4763-4768.]). For functionalized materials, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). For a brief reviews on the pyridine­dicarboxyl­ate family of ligands, see: Mirzaei et al. (2011[Mirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580-607.]); Axelrod et al. (2000[Axelrod, H. L., Abresch, E. C., Paddock, M. L., Okamura, M. Y. & Feher, G. (2000). PNAS, 97, 1542-1547.]). For the role of water clusters, see: Aghabozorg et al. (2010[Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289-300.]). For related structures: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Eshtiagh-Hosseini et al. (2010a[Eshtiagh-Hosseini, H., Yousefi, Z., Mirzaei, M., Chen, Y.-G., Beyramabadi, S. A., Shokrollahi, A. & Aghaei, R. (2010a). J. Mol. Struct. 973, 1-8.],b[Eshtiagh-Hosseini, H., Yousefi, Z., Shafiee, M. & Mirzaei, M. (2010b). J. Coord. Chem. 63, 3187-3197.], 2011a[Eshtiagh-Hosseini, H., Mirzaei, M., Yousefi, Z., Puschmann, H., Shokrollahi, A. & Aghaei, R. (2011a). J. Coord. Chem. 64, 3969-3979.],b[Eshtiagh-Hosseini, H., Mirzaei, M., Eydizadeh, E., Yousefi, Z. & Molčanov, K. (2011b). Acta Cryst. E67, m1411-m1412.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H11N2)[Fe(C7H3NO4)2]·4H2O

  • Mr = 653.36

  • Monoclinic, P 21 /n

  • a = 9.6130 (1) Å

  • b = 18.9256 (2) Å

  • c = 15.9563 (2) Å

  • β = 96.037 (1)°

  • V = 2886.86 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.77 mm−1

  • T = 293 K

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Agilent Xcalibur Ruby Nova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO Agilent Technologies, Santa Clara, California, USA.]) Tmin = 0.602, Tmax = 1

  • 15252 measured reflections

  • 5940 independent reflections

  • 5140 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.178

  • S = 1.05

  • 5940 reflections

  • 430 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3 0.86 2.42 3.038 (4) 130
N3—H3A⋯O11 0.86 2.30 3.008 (4) 139
N4—H4A⋯O12i 0.86 2.03 2.822 (5) 152
N4—H4B⋯O5ii 0.86 2.39 3.115 (4) 142
O9—H9A⋯O6 0.93 (4) 1.81 (5) 2.726 (4) 165 (5)
O9—H9B⋯O11iii 0.92 (2) 1.85 (2) 2.766 (4) 170 (5)
O10—H10A⋯O9iv 0.97 (5) 1.81 (5) 2.750 (5) 164 (5)
O10—H10B⋯O1 0.97 (5) 1.90 (5) 2.859 (5) 176 (11)
O11—H11A⋯O4 0.95 (4) 1.78 (4) 2.715 (4) 165 (3)
O11—H11B⋯O8v 0.93 (4) 1.97 (2) 2.865 (4) 163 (4)
O12—H12A⋯O10vi 0.96 (6) 1.96 (7) 2.827 (5) 149 (7)
O12—H12B⋯O8 0.95 (11) 2.06 (8) 2.874 (4) 142 (10)
C4—H4⋯O6vii 0.93 2.41 3.334 (4) 171
C9—H9⋯O4viii 0.93 2.33 3.257 (4) 171
C16—H16⋯O12v 0.93 2.59 3.426 (6) 150
C17—H17⋯O2ix 0.93 2.54 3.329 (5) 143
Symmetry codes: (i) -x, -y+2, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x-1, y, z; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ix) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO Agilent Technologies, Santa Clara, California, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Supramolecular chemistry, the knowledge of weak intermolecular interactions, has been attracting attention of basic sciences researchers and crystallographers (Lehn, 2002).

The functionalized materials such as dicarboxylic acids, amines and amides are important in this area (Moulton & Zaworotko, 2001).

Since 2008, we have focused on polycarboxylic acid complexes with transition metal ions along with N–, O–, and S– donor ligands for better clarification of non-covalent and coordination interactions of these ligands in natural human system, food chemistry, medicine etc (Mirzaei et al., 2011a; Axelrod et al., 2000).

Among them, pyridine-2,6-dicarboxylic acid with two carboxylic groups and a heteroaromatic ring has capability of participating in intermolecular interactions. Also, H2pydc and its mono- or doubly protonated form with high symmetry and four electron donating oxygen atoms and one nitrogen atom can be applied as a multidendate ligand in coordination compounds which can possess various coordination modes (Aghabozorg et al., 2008; Mirzaei et al., 2011). The most common coordination mode for (pydc)2- is tridentate: two (pydc)2- are coordinated to metal and induce octahedral coordination environment to the metal ion (Eshtiagh-Hosseini et al., 2010b). In this case, a counter ion is required for compensation of charge, for example, (Hbmmpa)[Fe(pydc)2].(EtOH)0.8(H2O)0.2 (bmmpa is short for 5-bromo-6-methyl-2-morpholinepyrimidine-4-amine, Eshtiagh-Hosseini et al., 2010a) and (H2-apym)[Fe(pydc)2].3H2O (2-apym is abbreviation of 2-aminopyrimidine, Eshtiagh-Hosseini et al. 2011a).

In continuation of our studies, we have synthesized and structurally characterized a new crystalline coordination compound, (H9-Acr)[Fe(pydc)2].4H2O.

FeIII has been coordinated by two almost perpendicular tridentate ligands (dihedral angle 88.78 (7)° ) with distorted octahedral geometry; a protonated 9-Acr moiety is present as a cation (Fig. 1).

In crystalline network, anionic complexes are connected to each other by C—H···O (D—H···A: 170.93°) interactions which can create a supramolecular synthon with graph set R22(10) in [101] direction (Fig. 2). These chains are attached to each other by three membered water cluster (Fig.3). In spite of the most recently observation which π-π interactions created between acridine moieties (Eshtiagh-Hosseini et al., 2011b), no ππ interaction between H9-Acr moieties is observed. Instead, such an interaction can be observed between anionic and cationic parts as seen in Fig. 4 that may be important in the formation of the ultimate network.

Related literature top

For background to supramolecular chemistry, see: Lehn (2002). For functionalized materials, see: Moulton & Zaworotko (2001). For a brief reviews on the pyridinedicarboxylate family of ligands, see: Mirzaei et al. (2011); Axelrod et al. (2000). For the role of water clusters, see: Aghabozorg et al. (2010). For related structures: Aghabozorg et al. (2008); Eshtiagh-Hosseini et al. (2010a,b, 2011a,b).

Experimental top

To an aqeous solution (5 ml) of pydcH2 (0.034 g, 0.2 mmol), 9-Acr (0.020 g, 0.1 mmol) in methanol (10 ml) solution was added dropwise following which a solution of FeCl3.6H2O (0.027 g, 0.1 mmol) in water (2 ml) was added and the resultant solution was heated and stirred for 3 hrs at 60 °C. Yellow crystals were obtained by slow evaporation of the solvent at room temperature after a week.

Refinement top

A full-matrix least-squares refinement implemented in the SHELXL97 (Sheldrick, 2008) was used. All non-H atoms were refined anisotropically. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and 0.97 Å for C and 0.86 Å for N atom and Uiso(H) = 1.2 Ueq(C,N). The H atoms of water were located in difference map and refined with the following restraints: O—H = 0.95 (2) Å and H···H = 1.50 (4) Å (total of 14 restraints were used).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound with numbering non-hydrogen atoms with probability 50%.
[Figure 2] Fig. 2. A representation of 1-D chains formed by anionic complexes with considering related synthons.
[Figure 3] Fig. 3. The role of water clusters in connection of 1-D chains.
[Figure 4] Fig. 4. Packing diagram of the title compounds with considering ππ stacking between cationic and anionic parts (water molecules have been omitted; Cg1: N2, C, C9, C10, C11, C12 and Cg2: N3, C15, C20, C21, C22, C27).
9-Aminoacridinium bis(pyridine-2,6-dicarboxylato- κ3O2,N,O6)ferrate(III) tetrahydrate top
Crystal data top
(C13H11N2)[Fe(C7H3NO4)2]·4H2OF(000) = 1348
Mr = 653.36Dx = 1.503 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 7426 reflections
a = 9.6130 (1) Åθ = 3.6–75.8°
b = 18.9256 (2) ŵ = 4.77 mm1
c = 15.9563 (2) ÅT = 293 K
β = 96.037 (1)°Prism, yellow
V = 2886.86 (6) Å30.2 × 0.15 × 0.1 mm
Z = 4
Data collection top
Agilent Xcalibur Ruby Nova
diffractometer
5140 reflections with I > 2σ(I)
ω scansRint = 0.020
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
θmax = 76.0°, θmin = 3.6°
Tmin = 0.602, Tmax = 1h = 1112
15252 measured reflectionsk = 2320
5940 independent reflectionsl = 1917
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1074P)2 + 1.5769P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.059(Δ/σ)max = 0.001
wR(F2) = 0.178Δρmax = 0.86 e Å3
S = 1.05Δρmin = 0.33 e Å3
5940 reflectionsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
430 parametersExtinction coefficient: 0.0010 (3)
14 restraints
Crystal data top
(C13H11N2)[Fe(C7H3NO4)2]·4H2OV = 2886.86 (6) Å3
Mr = 653.36Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.6130 (1) ŵ = 4.77 mm1
b = 18.9256 (2) ÅT = 293 K
c = 15.9563 (2) Å0.2 × 0.15 × 0.1 mm
β = 96.037 (1)°
Data collection top
Agilent Xcalibur Ruby Nova
diffractometer
5940 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5140 reflections with I > 2σ(I)
Tmin = 0.602, Tmax = 1Rint = 0.020
15252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05914 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.86 e Å3
5940 reflectionsΔρmin = 0.33 e Å3
430 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.52343 (5)0.88273 (2)0.30488 (3)0.04513 (18)
O10.6777 (3)0.95237 (13)0.33779 (15)0.0614 (6)
O20.7959 (3)1.01376 (15)0.4417 (2)0.0796 (8)
O30.3790 (2)0.81178 (12)0.33429 (13)0.0532 (5)
O40.2764 (3)0.75917 (14)0.43703 (16)0.0697 (7)
O50.6572 (2)0.80542 (12)0.27746 (13)0.0535 (5)
O60.7560 (3)0.74841 (14)0.17669 (16)0.0657 (6)
O70.3804 (3)0.95880 (13)0.26910 (15)0.0611 (6)
O80.2689 (3)1.01957 (14)0.1621 (2)0.0754 (8)
N10.5332 (2)0.88765 (12)0.43414 (15)0.0417 (5)
N20.5108 (3)0.88283 (12)0.17512 (15)0.0418 (5)
C10.6238 (3)0.93173 (15)0.47541 (18)0.0451 (6)
C20.6292 (4)0.93776 (18)0.5628 (2)0.0550 (7)
H20.69260.9680.59250.066*
C30.5380 (4)0.89773 (19)0.6036 (2)0.0592 (8)
H30.53860.90160.66180.071*
C40.4454 (4)0.85176 (18)0.55960 (19)0.0530 (7)
H40.38460.82420.58740.064*
C50.4457 (3)0.84784 (15)0.47327 (18)0.0430 (6)
C60.7092 (3)0.97043 (16)0.4157 (2)0.0550 (7)
C70.3576 (3)0.80208 (16)0.41175 (19)0.0479 (6)
C80.5914 (3)0.83863 (15)0.13740 (17)0.0424 (6)
C90.5902 (3)0.83856 (18)0.0508 (2)0.0534 (7)
H90.64780.80840.02410.064*
C100.5001 (4)0.88496 (19)0.0052 (2)0.0594 (8)
H100.4960.88580.05330.071*
C110.4157 (3)0.93029 (17)0.0460 (2)0.0536 (7)
H110.35460.96130.01560.064*
C120.4250 (3)0.92806 (14)0.13266 (19)0.0443 (6)
C130.6774 (3)0.79258 (16)0.20043 (19)0.0467 (6)
C140.3490 (3)0.97350 (16)0.1909 (2)0.0529 (7)
N30.2278 (3)0.76041 (19)0.1687 (2)0.0685 (8)
H3A0.24510.74910.22090.082*
N40.1409 (4)0.80668 (19)0.0810 (2)0.0756 (9)
H4A0.07760.83740.0970.091*
H4B0.18470.78520.11780.091*
C150.3006 (3)0.72748 (18)0.1104 (2)0.0562 (7)
C160.4026 (4)0.6782 (2)0.1433 (3)0.0755 (11)
H160.4170.66880.20070.091*
C170.4812 (4)0.6441 (2)0.0865 (4)0.0830 (14)
H170.54940.61150.1060.1*
C180.4577 (4)0.6589 (2)0.0009 (3)0.0800 (12)
H180.51140.63640.03640.096*
C190.3580 (4)0.7053 (2)0.0290 (3)0.0686 (9)
H190.34240.71350.08670.082*
C200.2791 (3)0.74077 (17)0.0250 (2)0.0549 (7)
C210.1699 (3)0.79300 (18)0.0026 (2)0.0565 (8)
C220.0989 (3)0.82788 (15)0.05985 (19)0.0468 (6)
C230.0044 (4)0.88057 (18)0.0422 (3)0.0637 (9)
H230.02910.89320.01380.076*
C240.0686 (5)0.9133 (2)0.1019 (3)0.0802 (12)
H240.13510.9480.08730.096*
C250.0347 (4)0.8947 (3)0.1863 (3)0.0823 (13)
H250.07960.91710.22790.099*
C260.0625 (5)0.8445 (3)0.2084 (3)0.0775 (11)
H260.08430.8330.2650.093*
C270.1307 (4)0.8097 (2)0.1468 (3)0.0618 (8)
O90.8858 (3)0.66602 (17)0.30146 (19)0.0750 (7)
H9A0.841 (5)0.687 (3)0.253 (2)0.115 (19)*
H9B0.982 (2)0.671 (3)0.302 (3)0.089 (15)*
O100.7306 (4)1.03358 (19)0.1934 (3)0.0988 (11)
H10A0.675 (6)1.076 (2)0.199 (4)0.14 (2)*
H10B0.710 (9)1.008 (3)0.243 (3)0.21 (4)*
O110.1750 (3)0.66734 (15)0.31482 (18)0.0691 (7)
H11A0.210 (5)0.693 (2)0.364 (2)0.097 (16)*
H11B0.206 (4)0.6226 (12)0.331 (3)0.069 (12)*
O120.0023 (3)1.08479 (18)0.1758 (2)0.0844 (8)
H12A0.090 (5)1.067 (7)0.160 (5)1.1 (4)*
H12B0.063 (7)1.052 (8)0.153 (10)0.53 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0566 (3)0.0466 (3)0.0345 (3)0.00371 (19)0.01561 (18)0.00198 (16)
O10.0685 (14)0.0605 (13)0.0584 (13)0.0183 (11)0.0217 (11)0.0015 (11)
O20.0737 (16)0.0708 (16)0.094 (2)0.0321 (14)0.0055 (14)0.0027 (15)
O30.0645 (13)0.0585 (12)0.0382 (10)0.0174 (10)0.0122 (9)0.0063 (9)
O40.0761 (15)0.0758 (16)0.0608 (14)0.0338 (13)0.0245 (12)0.0043 (12)
O50.0655 (13)0.0558 (12)0.0406 (11)0.0111 (10)0.0117 (9)0.0035 (9)
O60.0697 (14)0.0677 (15)0.0609 (14)0.0242 (12)0.0130 (11)0.0066 (11)
O70.0762 (15)0.0572 (13)0.0532 (13)0.0114 (11)0.0221 (11)0.0085 (10)
O80.0786 (17)0.0567 (14)0.092 (2)0.0225 (13)0.0144 (14)0.0045 (13)
N10.0460 (12)0.0426 (12)0.0380 (12)0.0022 (9)0.0118 (9)0.0038 (9)
N20.0484 (12)0.0404 (12)0.0387 (12)0.0015 (9)0.0141 (9)0.0007 (9)
C10.0482 (14)0.0424 (13)0.0450 (14)0.0003 (11)0.0061 (11)0.0074 (11)
C20.0610 (18)0.0549 (17)0.0475 (16)0.0039 (14)0.0014 (13)0.0139 (13)
C30.076 (2)0.0651 (19)0.0362 (15)0.0081 (17)0.0064 (14)0.0077 (13)
C40.0615 (17)0.0594 (17)0.0407 (15)0.0040 (14)0.0176 (13)0.0025 (13)
C50.0469 (14)0.0454 (14)0.0388 (13)0.0007 (11)0.0142 (11)0.0002 (11)
C60.0542 (16)0.0437 (15)0.068 (2)0.0072 (13)0.0114 (14)0.0008 (14)
C70.0514 (15)0.0509 (15)0.0436 (14)0.0088 (12)0.0151 (12)0.0008 (12)
C80.0453 (13)0.0434 (13)0.0403 (14)0.0019 (11)0.0129 (11)0.0031 (11)
C90.0601 (17)0.0583 (17)0.0446 (15)0.0004 (14)0.0188 (13)0.0067 (13)
C100.073 (2)0.073 (2)0.0336 (15)0.0046 (16)0.0093 (13)0.0006 (13)
C110.0574 (17)0.0527 (16)0.0499 (16)0.0040 (13)0.0031 (13)0.0082 (13)
C120.0476 (14)0.0382 (13)0.0482 (15)0.0040 (11)0.0103 (11)0.0031 (11)
C130.0494 (14)0.0479 (15)0.0442 (15)0.0023 (12)0.0110 (11)0.0021 (12)
C140.0572 (17)0.0412 (14)0.0623 (19)0.0028 (13)0.0159 (14)0.0011 (13)
N30.0682 (18)0.083 (2)0.0547 (16)0.0035 (16)0.0074 (13)0.0079 (15)
N40.081 (2)0.075 (2)0.072 (2)0.0226 (17)0.0148 (16)0.0112 (17)
C150.0481 (15)0.0581 (17)0.0643 (19)0.0061 (14)0.0142 (14)0.0041 (15)
C160.073 (2)0.083 (3)0.068 (2)0.009 (2)0.0075 (19)0.020 (2)
C170.0507 (19)0.064 (2)0.132 (4)0.0162 (17)0.001 (2)0.011 (2)
C180.066 (2)0.078 (3)0.100 (3)0.000 (2)0.028 (2)0.016 (2)
C190.074 (2)0.070 (2)0.063 (2)0.0053 (18)0.0125 (17)0.0034 (17)
C200.0540 (16)0.0473 (15)0.0628 (19)0.0045 (13)0.0028 (14)0.0047 (13)
C210.0541 (16)0.0565 (17)0.0598 (19)0.0091 (14)0.0106 (14)0.0034 (14)
C220.0412 (13)0.0451 (14)0.0540 (16)0.0046 (11)0.0049 (11)0.0008 (12)
C230.0570 (18)0.0532 (18)0.082 (3)0.0021 (14)0.0099 (17)0.0086 (16)
C240.072 (2)0.070 (2)0.100 (3)0.010 (2)0.015 (2)0.007 (2)
C250.075 (3)0.083 (3)0.093 (3)0.002 (2)0.027 (2)0.021 (2)
C260.075 (2)0.092 (3)0.068 (2)0.006 (2)0.0185 (19)0.009 (2)
C270.0504 (17)0.0624 (19)0.074 (2)0.0068 (15)0.0104 (15)0.0053 (17)
O90.0724 (17)0.0870 (19)0.0651 (16)0.0028 (15)0.0058 (13)0.0152 (14)
O100.120 (3)0.077 (2)0.109 (3)0.0106 (19)0.056 (2)0.0198 (19)
O110.0763 (16)0.0622 (15)0.0669 (16)0.0011 (13)0.0014 (13)0.0011 (12)
O120.0805 (18)0.0745 (18)0.098 (2)0.0113 (15)0.0102 (16)0.0118 (16)
Geometric parameters (Å, º) top
Fe1—O12.012 (2)N3—C271.341 (5)
Fe1—O32.022 (2)N3—C151.371 (5)
Fe1—O52.026 (2)N3—H3A0.86
Fe1—O72.031 (2)N4—C211.280 (5)
Fe1—N12.057 (2)N4—H4A0.86
Fe1—N22.061 (2)N4—H4B0.86
O1—C61.294 (4)C15—C201.379 (5)
O2—C61.211 (4)C15—C161.414 (5)
O3—C71.287 (4)C16—C171.397 (7)
O4—C71.224 (4)C16—H160.93
O5—C131.288 (4)C17—C181.389 (7)
O6—C131.214 (4)C17—H170.93
O7—C141.283 (4)C18—C191.350 (6)
O8—C141.221 (4)C18—H180.93
N1—C11.329 (4)C19—C201.381 (5)
N1—C51.333 (4)C19—H190.93
N2—C121.324 (4)C20—C211.475 (5)
N2—C81.327 (4)C21—C221.428 (5)
C1—C21.394 (4)C22—C231.415 (5)
C1—C61.511 (4)C22—C271.431 (5)
C2—C31.374 (5)C23—C241.340 (6)
C2—H20.93C23—H230.93
C3—C41.382 (5)C24—C251.398 (7)
C3—H30.93C24—H240.93
C4—C51.380 (4)C25—C261.353 (7)
C4—H40.93C25—H250.93
C5—C71.502 (4)C26—C271.402 (6)
C8—C91.380 (4)C26—H260.93
C8—C131.510 (4)O9—H9A0.928 (19)
C9—C101.385 (5)O9—H9B0.924 (19)
C9—H90.93O10—H10A0.97 (2)
C10—C111.388 (5)O10—H10B0.96 (2)
C10—H100.93O11—H11A0.946 (19)
C11—C121.377 (4)O11—H11B0.926 (18)
C11—H110.93O12—H12A0.96 (2)
C12—C141.510 (4)O12—H12B0.96 (2)
O1—Fe1—O3151.61 (9)N2—C12—C11120.3 (3)
O1—Fe1—O593.57 (10)N2—C12—C14111.6 (3)
O3—Fe1—O592.15 (10)C11—C12—C14128.0 (3)
O1—Fe1—O793.89 (12)O6—C13—O5126.1 (3)
O3—Fe1—O794.29 (10)O6—C13—C8120.3 (3)
O5—Fe1—O7151.37 (9)O5—C13—C8113.6 (2)
O1—Fe1—N175.75 (9)O8—C14—O7126.5 (3)
O3—Fe1—N175.96 (9)O8—C14—C12120.2 (3)
O5—Fe1—N1106.63 (9)O7—C14—C12113.3 (3)
O7—Fe1—N1102.00 (9)C27—N3—C15122.1 (3)
O1—Fe1—N2103.03 (9)C27—N3—H3A119
O3—Fe1—N2105.34 (9)C15—N3—H3A119
O5—Fe1—N275.84 (9)C21—N4—H4A120
O7—Fe1—N275.54 (9)C21—N4—H4B120
N1—Fe1—N2177.24 (9)H4A—N4—H4B120
C6—O1—Fe1121.0 (2)N3—C15—C20123.6 (3)
C7—O3—Fe1120.05 (19)N3—C15—C16115.5 (4)
C13—O5—Fe1120.35 (19)C20—C15—C16120.9 (3)
C14—O7—Fe1120.66 (19)C17—C16—C15117.7 (4)
C1—N1—C5122.4 (3)C17—C16—H16121.2
C1—N1—Fe1118.93 (19)C15—C16—H16121.2
C5—N1—Fe1118.67 (19)C18—C17—C16120.1 (4)
C12—N2—C8122.5 (3)C18—C17—H17119.9
C12—N2—Fe1118.83 (19)C16—C17—H17119.9
C8—N2—Fe1118.65 (19)C19—C18—C17121.0 (4)
N1—C1—C2120.0 (3)C19—C18—H18119.5
N1—C1—C6111.3 (3)C17—C18—H18119.5
C2—C1—C6128.7 (3)C18—C19—C20120.8 (4)
C3—C2—C1118.1 (3)C18—C19—H19119.6
C3—C2—H2120.9C20—C19—H19119.6
C1—C2—H2120.9C15—C20—C19119.5 (3)
C2—C3—C4121.0 (3)C15—C20—C21116.4 (3)
C2—C3—H3119.5C19—C20—C21124.1 (3)
C4—C3—H3119.5N4—C21—C22121.2 (3)
C5—C4—C3118.2 (3)N4—C21—C20120.2 (3)
C5—C4—H4120.9C22—C21—C20118.6 (3)
C3—C4—H4120.9C23—C22—C21124.3 (3)
N1—C5—C4120.3 (3)C23—C22—C27115.9 (3)
N1—C5—C7111.1 (2)C21—C22—C27119.8 (3)
C4—C5—C7128.5 (3)C24—C23—C22123.3 (4)
O2—C6—O1126.2 (3)C24—C23—H23118.3
O2—C6—C1120.8 (3)C22—C23—H23118.3
O1—C6—C1112.9 (3)C23—C24—C25119.4 (4)
O4—C7—O3125.7 (3)C23—C24—H24120.3
O4—C7—C5120.2 (3)C25—C24—H24120.3
O3—C7—C5114.1 (2)C26—C25—C24120.8 (4)
N2—C8—C9120.7 (3)C26—C25—H25119.6
N2—C8—C13111.5 (2)C24—C25—H25119.6
C9—C8—C13127.8 (3)C25—C26—C27120.5 (4)
C8—C9—C10117.7 (3)C25—C26—H26119.8
C8—C9—H9121.2C27—C26—H26119.8
C10—C9—H9121.2N3—C27—C26120.5 (4)
C9—C10—C11120.6 (3)N3—C27—C22119.4 (3)
C9—C10—H10119.7C26—C27—C22120.0 (4)
C11—C10—H10119.7H9A—O9—H9B110 (4)
C12—C11—C10118.2 (3)H10A—O10—H10B100 (4)
C12—C11—H11120.9H11A—O11—H11B99 (3)
C10—C11—H11120.9H12A—O12—H12B105 (5)
O3—Fe1—O1—C67.7 (4)C4—C5—C7—O3178.1 (3)
O5—Fe1—O1—C6108.9 (3)C12—N2—C8—C90.7 (4)
O7—Fe1—O1—C698.8 (3)Fe1—N2—C8—C9177.7 (2)
N1—Fe1—O1—C62.6 (2)C12—N2—C8—C13179.4 (2)
N2—Fe1—O1—C6174.9 (2)Fe1—N2—C8—C132.2 (3)
O1—Fe1—O3—C75.6 (4)N2—C8—C9—C101.3 (5)
O5—Fe1—O3—C7107.1 (2)C13—C8—C9—C10178.8 (3)
O7—Fe1—O3—C7100.8 (2)C8—C9—C10—C110.8 (5)
N1—Fe1—O3—C70.5 (2)C9—C10—C11—C120.4 (5)
N2—Fe1—O3—C7177.0 (2)C8—N2—C12—C110.6 (4)
O1—Fe1—O5—C13100.7 (2)Fe1—N2—C12—C11179.0 (2)
O3—Fe1—O5—C13107.1 (2)C8—N2—C12—C14178.3 (2)
O7—Fe1—O5—C134.1 (4)Fe1—N2—C12—C140.1 (3)
N1—Fe1—O5—C13176.9 (2)C10—C11—C12—N21.1 (4)
N2—Fe1—O5—C131.8 (2)C10—C11—C12—C14177.5 (3)
O1—Fe1—O7—C14101.3 (3)Fe1—O5—C13—O6179.0 (3)
O3—Fe1—O7—C14105.9 (2)Fe1—O5—C13—C81.2 (3)
O5—Fe1—O7—C143.4 (4)N2—C8—C13—O6179.1 (3)
N1—Fe1—O7—C14177.6 (2)C9—C8—C13—O61.0 (5)
N2—Fe1—O7—C141.1 (2)N2—C8—C13—O50.7 (4)
O1—Fe1—N1—C12.2 (2)C9—C8—C13—O5179.2 (3)
O3—Fe1—N1—C1179.7 (2)Fe1—O7—C14—O8177.2 (3)
O5—Fe1—N1—C191.7 (2)Fe1—O7—C14—C121.5 (4)
O7—Fe1—N1—C188.8 (2)N2—C12—C14—O8177.8 (3)
O1—Fe1—N1—C5179.6 (2)C11—C12—C14—O81.0 (5)
O3—Fe1—N1—C52.1 (2)N2—C12—C14—O71.0 (4)
O5—Fe1—N1—C590.1 (2)C11—C12—C14—O7179.8 (3)
O7—Fe1—N1—C589.4 (2)C27—N3—C15—C201.3 (5)
O1—Fe1—N2—C1290.2 (2)C27—N3—C15—C16178.2 (3)
O3—Fe1—N2—C1291.0 (2)N3—C15—C16—C17179.0 (4)
O5—Fe1—N2—C12179.3 (2)C20—C15—C16—C170.5 (6)
O7—Fe1—N2—C120.5 (2)C15—C16—C17—C180.2 (6)
O1—Fe1—N2—C888.2 (2)C16—C17—C18—C190.9 (7)
O3—Fe1—N2—C890.5 (2)C17—C18—C19—C201.7 (7)
O5—Fe1—N2—C82.2 (2)N3—C15—C20—C19179.6 (3)
O7—Fe1—N2—C8178.9 (2)C16—C15—C20—C190.2 (5)
C5—N1—C1—C20.3 (4)N3—C15—C20—C210.7 (5)
Fe1—N1—C1—C2177.9 (2)C16—C15—C20—C21179.9 (3)
C5—N1—C1—C6179.7 (3)C18—C19—C20—C151.3 (6)
Fe1—N1—C1—C61.5 (3)C18—C19—C20—C21179.0 (4)
N1—C1—C2—C30.7 (5)C15—C20—C21—N4178.0 (3)
C6—C1—C2—C3178.6 (3)C19—C20—C21—N41.7 (5)
C1—C2—C3—C41.2 (5)C15—C20—C21—C222.5 (4)
C2—C3—C4—C50.8 (5)C19—C20—C21—C22177.8 (3)
C1—N1—C5—C40.7 (4)N4—C21—C22—C231.7 (5)
Fe1—N1—C5—C4177.5 (2)C20—C21—C22—C23177.9 (3)
C1—N1—C5—C7178.8 (3)N4—C21—C22—C27178.0 (3)
Fe1—N1—C5—C73.1 (3)C20—C21—C22—C272.4 (4)
C3—C4—C5—N10.1 (5)C21—C22—C23—C24179.1 (4)
C3—C4—C5—C7179.3 (3)C27—C22—C23—C241.1 (5)
Fe1—O1—C6—O2176.8 (3)C22—C23—C24—C250.8 (6)
Fe1—O1—C6—C12.5 (4)C23—C24—C25—C260.4 (7)
N1—C1—C6—O2178.8 (3)C24—C25—C26—C270.4 (7)
C2—C1—C6—O20.5 (5)C15—N3—C27—C26177.3 (4)
N1—C1—C6—O10.6 (4)C15—N3—C27—C221.4 (5)
C2—C1—C6—O1179.9 (3)C25—C26—C27—N3179.5 (4)
Fe1—O3—C7—O4177.6 (3)C25—C26—C27—C220.8 (6)
Fe1—O3—C7—C50.9 (4)C23—C22—C27—N3179.8 (3)
N1—C5—C7—O4176.0 (3)C21—C22—C27—N30.5 (5)
C4—C5—C7—O43.4 (5)C23—C22—C27—C261.1 (5)
N1—C5—C7—O32.5 (4)C21—C22—C27—C26179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O30.862.423.038 (4)130
N3—H3A···O110.862.303.008 (4)139
N4—H4A···O12i0.862.032.822 (5)152
N4—H4B···O5ii0.862.393.115 (4)142
O9—H9A···O60.93 (4)1.81 (5)2.726 (4)165 (5)
O9—H9B···O11iii0.92 (2)1.85 (2)2.766 (4)170 (5)
O10—H10A···O9iv0.97 (5)1.81 (5)2.750 (5)164 (5)
O10—H10B···O10.97 (5)1.90 (5)2.859 (5)176 (11)
O11—H11A···O40.95 (4)1.78 (4)2.715 (4)165 (3)
O11—H11B···O8v0.93 (4)1.97 (2)2.865 (4)163 (4)
O12—H12A···O10vi0.96 (6)1.96 (7)2.827 (5)149 (7)
O12—H12B···O80.95 (11)2.06 (8)2.874 (4)142 (10)
C4—H4···O6vii0.932.413.334 (4)171
C9—H9···O4viii0.932.333.257 (4)171
C16—H16···O12v0.932.593.426 (6)150
C17—H17···O2ix0.932.543.329 (5)143
Symmetry codes: (i) x, y+2, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x1, y, z; (vii) x1/2, y+3/2, z+1/2; (viii) x+1/2, y+3/2, z1/2; (ix) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C13H11N2)[Fe(C7H3NO4)2]·4H2O
Mr653.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6130 (1), 18.9256 (2), 15.9563 (2)
β (°) 96.037 (1)
V3)2886.86 (6)
Z4
Radiation typeCu Kα
µ (mm1)4.77
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerAgilent Xcalibur Ruby Nova
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.602, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
15252, 5940, 5140
Rint0.020
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.178, 1.05
No. of reflections5940
No. of parameters430
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.33

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O30.862.423.038 (4)130
N3—H3A···O110.862.303.008 (4)139
N4—H4A···O12i0.862.032.822 (5)152
N4—H4B···O5ii0.862.393.115 (4)142
O9—H9A···O60.93 (4)1.81 (5)2.726 (4)165 (5)
O9—H9B···O11iii0.92 (2)1.85 (2)2.766 (4)170 (5)
O10—H10A···O9iv0.97 (5)1.81 (5)2.750 (5)164 (5)
O10—H10B···O10.97 (5)1.90 (5)2.859 (5)176 (11)
O11—H11A···O40.95 (4)1.78 (4)2.715 (4)165 (3)
O11—H11B···O8v0.93 (4)1.97 (2)2.865 (4)163 (4)
O12—H12A···O10vi0.96 (6)1.96 (7)2.827 (5)149 (7)
O12—H12B···O80.95 (11)2.06 (8)2.874 (4)142 (10)
C4—H4···O6vii0.932.413.334 (4)171
C9—H9···O4viii0.932.333.257 (4)171
C16—H16···O12v0.932.593.426 (6)150
C17—H17···O2ix0.932.543.329 (5)143
Symmetry codes: (i) x, y+2, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x1, y, z; (vii) x1/2, y+3/2, z+1/2; (viii) x+1/2, y+3/2, z1/2; (ix) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors wish to thank to the Ferdowsi University of Mashhad (grant No. 1506/.3) and the Ministry of Science, Education and Sports, Republic of Croatia (grant No. 098–1191344–2943) for financial support of this work.

References

First citationAghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289–300.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAgilent (2011). CrysAlis PRO Agilent Technologies, Santa Clara, California, USA.  Google Scholar
First citationAxelrod, H. L., Abresch, E. C., Paddock, M. L., Okamura, M. Y. & Feher, G. (2000). PNAS, 97, 1542–1547.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEshtiagh-Hosseini, H., Mirzaei, M., Eydizadeh, E., Yousefi, Z. & Molčanov, K. (2011b). Acta Cryst. E67, m1411–m1412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Mirzaei, M., Yousefi, Z., Puschmann, H., Shokrollahi, A. & Aghaei, R. (2011a). J. Coord. Chem. 64, 3969–3979.  CAS Google Scholar
First citationEshtiagh-Hosseini, H., Yousefi, Z., Mirzaei, M., Chen, Y.-G., Beyramabadi, S. A., Shokrollahi, A. & Aghaei, R. (2010a). J. Mol. Struct. 973, 1–8.  CAS Google Scholar
First citationEshtiagh-Hosseini, H., Yousefi, Z., Shafiee, M. & Mirzaei, M. (2010b). J. Coord. Chem. 63, 3187–3197.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLehn, J.-M. (2002). Proc. Natl Acad. Sci. USA, 99, 4763–4768.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580–607.  CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m761-m762
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds