organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[({2-[(2-Hy­dr­oxy-5-meth­­oxy­benzyl­­idene)amino]­eth­yl}imino)­meth­yl]-4-meth­­oxy­phenol

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 23 April 2012; accepted 24 April 2012; online 16 May 2012)

The asymmetric unit of the title compound, C18H20N2O4, contains one-half mol­ecule with an inversion center located at the centroid of the mol­ecule. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming layers parallel to (101). An intra­molecular O—H⋯N hydrogen bond also occurs.

Related literature

For the synthesis of similar compounds see: Srinivasan et al. (1986[Srinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309-2320.]); Moutet & Ourari (1997[Moutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525-2531.]); Ourari et al. (2008[Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). J. Electrochem. Commun. 10, 1736-1739.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O4

  • Mr = 328.36

  • Monoclinic, P 21 /c

  • a = 15.0040 (12) Å

  • b = 5.9722 (3) Å

  • c = 9.3128 (8) Å

  • β = 92.001 (3)°

  • V = 833.98 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.50 × 0.23 × 0.19 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 3001 measured reflections

  • 1664 independent reflections

  • 1097 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.167

  • S = 1.05

  • 1664 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N2 0.82 1.85 2.5844 (18) 148
C10—H10CCgi 0.96 2.64 3.521 (2) 152
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The tetradentate Schiff base ligands derived from salicylaldehyde derivatives and diamino compounds have been found to be excellent chelating agents for most applications in coordination chemistry such as in catalysis (Srinivasan et al., 1986) and electrocatalysis (Moutet & Ourari, 1997; Ourari et al., 2008). Here, we report the synthesis of the title compound and its crystal structure.

The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of the title compound, consists of one-half of the molecule, with the other half generated by a crystallographic inversion center. The crystal packing in the title structure can be described by a zigzag layers parallel to (101) plane (Fig. 2). There is one intramolecular O—H···N hydrogen bonding in this packing (Table 1, Fig. 2), which it is stabilized C—H···π and Van der Walls interactions (table 1) All these interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.

Related literature top

For the synthesis of similar compounds see: Srinivasan et al. (1986); Moutet & Ourari (1997); Ourari et al. (2008).

Experimental top

60 mg of 1,2-diaminoethane (1 mmol) were dissolved in 10 ml of absolute ethanol. This solution was drop wise added, under stirring, to an ethanolic solution (10 ml) containing 304 mg of 5-methoxysalicylaldehyde (2 mmol). This mixture was refluxed for 1 h after which a yellow precipitate is formed, recovered by filtration, washed several times with diethyl oxide and dried to yield 282 mg (86%) of the title compound. The suitable crystals for X-ray analysis were obtained by slow evaporation from a mixture of solvents ethanol/dichloromethane (8/2, v/v).

Refinement top

The H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and O) with C—H = 0.93 Å (methine, aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and O—H = 0.82 Å (hydroxyl) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular geometry of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the contents of the asymmetric unit are numbered.
[Figure 2] Fig. 2. Diagram of layered packing parallel to (101) plane and showing O—H···N and C—H···π interactions.
2-[({2-[(2-Hydroxy-5-methoxybenzylidene)amino]ethyl}imino)methyl]- 4-methoxyphenol top
Crystal data top
C18H20N2O4F(000) = 348
Mr = 328.36Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1761 reflections
a = 15.0040 (12) Åθ = 1.0–26.4°
b = 5.9722 (3) ŵ = 0.09 mm1
c = 9.3128 (8) ÅT = 295 K
β = 92.001 (3)°Prism, colorless
V = 833.98 (11) Å30.50 × 0.23 × 0.19 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1097 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.021
Graphite monochromatorθmax = 26.4°, θmin = 2.7°
Detector resolution: 9 pixels mm-1h = 1818
CCD rotation images, thick slices scansk = 67
3001 measured reflectionsl = 1111
1664 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.101P)2 + 0.0006P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1664 reflectionsΔρmax = 0.23 e Å3
111 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.08 (2)
Crystal data top
C18H20N2O4V = 833.98 (11) Å3
Mr = 328.36Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.0040 (12) ŵ = 0.09 mm1
b = 5.9722 (3) ÅT = 295 K
c = 9.3128 (8) Å0.50 × 0.23 × 0.19 mm
β = 92.001 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1097 reflections with I > 2σ(I)
3001 measured reflectionsRint = 0.021
1664 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
1664 reflectionsΔρmin = 0.16 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00544 (12)0.5332 (3)0.42227 (18)0.0554 (5)
H1A0.02370.4040.36740.066*
H1B0.05110.5860.38160.066*
C30.13689 (11)0.6835 (3)0.32973 (18)0.0500 (5)
H30.13990.55370.27490.06*
C40.20642 (11)0.8520 (3)0.31789 (17)0.0488 (5)
C50.20521 (13)1.0483 (3)0.40154 (19)0.0545 (5)
C60.27360 (14)1.2037 (3)0.3894 (2)0.0620 (5)
H60.27311.33410.44390.074*
C70.34154 (14)1.1672 (3)0.2983 (2)0.0623 (5)
H70.38631.27390.29090.075*
C80.34469 (12)0.9719 (3)0.21605 (18)0.0542 (5)
C90.27715 (11)0.8166 (3)0.22553 (18)0.0515 (5)
H90.27840.6870.17020.062*
C100.42592 (14)0.7497 (3)0.0532 (3)0.0764 (7)
H10A0.43130.62630.1190.115*
H10B0.47810.75720.00330.115*
H10C0.37420.72870.00890.115*
N20.07208 (9)0.7091 (2)0.41315 (16)0.0544 (5)
O50.13958 (10)1.0889 (2)0.49361 (15)0.0712 (5)
H50.10370.98530.49030.107*
O80.41724 (10)0.9514 (2)0.13122 (15)0.0727 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0480 (10)0.0591 (10)0.0594 (11)0.0045 (7)0.0065 (8)0.0027 (8)
C30.0467 (10)0.0539 (9)0.0494 (10)0.0010 (7)0.0029 (8)0.0004 (7)
C40.0494 (10)0.0483 (9)0.0486 (10)0.0007 (7)0.0001 (8)0.0034 (6)
C50.0598 (12)0.0495 (10)0.0541 (10)0.0057 (8)0.0025 (9)0.0020 (7)
C60.0718 (13)0.0466 (9)0.0672 (12)0.0003 (8)0.0038 (10)0.0033 (8)
C70.0652 (12)0.0518 (10)0.0696 (12)0.0104 (8)0.0025 (10)0.0063 (9)
C80.0517 (11)0.0589 (10)0.0521 (10)0.0062 (7)0.0040 (8)0.0086 (7)
C90.0546 (11)0.0514 (9)0.0488 (10)0.0030 (7)0.0044 (9)0.0013 (7)
C100.0628 (13)0.0883 (14)0.0793 (15)0.0105 (10)0.0209 (11)0.0118 (11)
N20.0486 (9)0.0571 (9)0.0578 (9)0.0012 (6)0.0068 (7)0.0004 (6)
O50.0726 (10)0.0631 (8)0.0789 (10)0.0062 (6)0.0182 (8)0.0140 (6)
O80.0643 (9)0.0764 (9)0.0786 (10)0.0194 (7)0.0215 (7)0.0033 (7)
Geometric parameters (Å, º) top
C1—N21.455 (2)C6—H60.93
C1—C1i1.515 (3)C7—C81.397 (2)
C1—H1A0.97C7—H70.93
C1—H1B0.97C8—O81.373 (2)
C3—N21.275 (2)C8—C91.379 (2)
C3—C41.456 (2)C9—H90.93
C3—H30.93C10—O81.415 (2)
C4—C91.405 (2)C10—H10A0.96
C4—C51.408 (2)C10—H10B0.96
C5—O51.350 (2)C10—H10C0.96
C5—C61.391 (3)O5—H50.82
C6—C71.366 (3)
N2—C1—C1i109.99 (18)C6—C7—C8120.91 (16)
N2—C1—H1A109.7C6—C7—H7119.5
C1i—C1—H1A109.7C8—C7—H7119.5
N2—C1—H1B109.7O8—C8—C9125.19 (16)
C1i—C1—H1B109.7O8—C8—C7115.64 (15)
H1A—C1—H1B108.2C9—C8—C7119.18 (17)
N2—C3—C4121.80 (15)C8—C9—C4120.69 (16)
N2—C3—H3119.1C8—C9—H9119.7
C4—C3—H3119.1C4—C9—H9119.7
C9—C4—C5119.26 (16)O8—C10—H10A109.5
C9—C4—C3120.03 (15)O8—C10—H10B109.5
C5—C4—C3120.68 (16)H10A—C10—H10B109.5
O5—C5—C6119.26 (16)O8—C10—H10C109.5
O5—C5—C4121.64 (16)H10A—C10—H10C109.5
C6—C5—C4119.10 (17)H10B—C10—H10C109.5
C7—C6—C5120.86 (16)C3—N2—C1119.31 (15)
C7—C6—H6119.6C5—O5—H5109.5
C5—C6—H6119.6C8—O8—C10117.41 (14)
N2—C3—C4—C9179.47 (16)C6—C7—C8—C91.2 (3)
N2—C3—C4—C51.4 (3)O8—C8—C9—C4178.87 (17)
C9—C4—C5—O5178.94 (15)C7—C8—C9—C40.8 (3)
C3—C4—C5—O50.9 (3)C5—C4—C9—C80.2 (2)
C9—C4—C5—C60.8 (2)C3—C4—C9—C8178.27 (15)
C3—C4—C5—C6178.82 (15)C4—C3—N2—C1178.95 (15)
O5—C5—C6—C7179.38 (17)C1i—C1—N2—C3127.0 (2)
C4—C5—C6—C70.3 (3)C9—C8—O8—C103.6 (3)
C5—C6—C7—C80.7 (3)C7—C8—O8—C10176.06 (17)
C6—C7—C8—O8178.45 (17)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5···N20.821.852.5844 (18)148
C10—H10C···Cgii0.962.643.521 (2)152
Symmetry code: (ii) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC18H20N2O4
Mr328.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.0040 (12), 5.9722 (3), 9.3128 (8)
β (°) 92.001 (3)
V3)833.98 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.23 × 0.19
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3001, 1664, 1097
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.167, 1.05
No. of reflections1664
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5···N20.82001.85002.5844 (18)148
C10—H10C···Cgi0.962.643.521 (2)152
Symmetry code: (i) x, y+1/2, z3/2.
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes1, France) for his valuable contribution and insightful discussions.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMoutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525–2531.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOurari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). J. Electrochem. Commun. 10, 1736–1739.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309–2320.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds