organic compounds
N-Methylpyrrolidine-1-carbothioamide
aDepartment of Chemistry, University of Malakand, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, cDepartment of Pharmacy, University of Malakand, Pakistan, and dDepartment of Biotechnology, University of Malakand, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
There are two independent molecules in the 6H12N2S, in which the N-methylthioformamide unit and the pyrrolidine ring mean plane are oriented at dihedral angles of 5.9 (5) and 5.9 (4)°. In the crystal, zigzag C(4) chains extending along the a axis are formed due to N—H⋯S hydrogen bonds between alternate arrangements of molecules. The chains are interlinked by C—H⋯S hydrogen bonds.
of the title compound, CRelated literature
For a related structure, see: Jiang (2009). For graph–set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536812020971/bq2355sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020971/bq2355Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812020971/bq2355Isup3.cml
A solution of pyrrolidine (0.36 g, 5.00 mmol) in CH3CN (3 ml) was added dropwise to a stirred solution of methyl isothiocyanate (0.47 ml, 5.50 mmol) in CH3CN (10 ml, anhydrous) under cooling in an ice-bath to keep the reaction temperature below 283 K. The ice-bath was removed and stirring was continued at room temperature for 2 h to furnish a yellow-colored solution. The reaction mixture was extracted with ethylacetate and subjected to
to get the colorless product in 67% yield and then recrystalized with methanol to get colorless prisms of (I).The H-atoms were positioned geometrically (C–H = 0.96–0.97 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C6H12N2S | Z = 4 |
Mr = 144.25 | F(000) = 312 |
Triclinic, P1 | Dx = 1.217 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.616 (2) Å | Cell parameters from 1204 reflections |
b = 9.077 (2) Å | θ = 2.4–26.0° |
c = 10.796 (3) Å | µ = 0.33 mm−1 |
α = 73.725 (14)° | T = 296 K |
β = 86.656 (15)° | Prism, colorless |
γ = 76.177 (16)° | 0.30 × 0.25 × 0.20 mm |
V = 787.0 (3) Å3 |
Bruker Kappa APEXII CCD diffractometer | 2699 independent reflections |
Radiation source: fine-focus sealed tube | 1385 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.067 |
Detector resolution: 8.10 pixels mm-1 | θmax = 25.0°, θmin = 2.4° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −11→11 |
Tmin = 0.957, Tmax = 0.966 | l = −13→13 |
9119 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.079 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.262 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.1268P)2 + 0.3916P] where P = (Fo2 + 2Fc2)/3 |
2699 reflections | (Δ/σ)max < 0.001 |
165 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C6H12N2S | γ = 76.177 (16)° |
Mr = 144.25 | V = 787.0 (3) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.616 (2) Å | Mo Kα radiation |
b = 9.077 (2) Å | µ = 0.33 mm−1 |
c = 10.796 (3) Å | T = 296 K |
α = 73.725 (14)° | 0.30 × 0.25 × 0.20 mm |
β = 86.656 (15)° |
Bruker Kappa APEXII CCD diffractometer | 2699 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1385 reflections with I > 3σ(I) |
Tmin = 0.957, Tmax = 0.966 | Rint = 0.067 |
9119 measured reflections |
R[F2 > 2σ(F2)] = 0.079 | 0 restraints |
wR(F2) = 0.262 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.43 e Å−3 |
2699 reflections | Δρmin = −0.33 e Å−3 |
165 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4239 (8) | 0.1340 (7) | 0.3083 (6) | 0.101 (2) | |
H1A | 0.3186 | 0.1209 | 0.3350 | 0.151* | |
H1B | 0.4965 | 0.0862 | 0.3803 | 0.151* | |
H1C | 0.4586 | 0.0844 | 0.2406 | 0.151* | |
C2 | 0.3360 (6) | 0.3972 (7) | 0.1594 (5) | 0.0699 (14) | |
C3 | 0.2574 (7) | 0.6685 (8) | 0.0191 (5) | 0.0913 (18) | |
H3A | 0.2961 | 0.6484 | −0.0622 | 0.110* | |
H3B | 0.1437 | 0.6732 | 0.0248 | 0.110* | |
C4 | 0.2906 (12) | 0.8143 (10) | 0.0304 (9) | 0.153 (3) | |
H4A | 0.3452 | 0.8611 | −0.0463 | 0.184* | |
H4B | 0.1906 | 0.8885 | 0.0365 | 0.184* | |
C5 | 0.3868 (11) | 0.7860 (8) | 0.1411 (7) | 0.123 (3) | |
H5A | 0.3265 | 0.8361 | 0.2030 | 0.148* | |
H5B | 0.4801 | 0.8297 | 0.1166 | 0.148* | |
C6 | 0.4365 (7) | 0.6143 (7) | 0.1987 (5) | 0.0846 (17) | |
H6A | 0.4123 | 0.5869 | 0.2900 | 0.101* | |
H6B | 0.5503 | 0.5764 | 0.1880 | 0.101* | |
C7 | 0.0612 (8) | 0.8849 (7) | 0.7020 (6) | 0.0905 (18) | |
H7A | 0.1661 | 0.8968 | 0.7156 | 0.136* | |
H7B | −0.0082 | 0.9109 | 0.7695 | 0.136* | |
H7C | 0.0199 | 0.9542 | 0.6202 | 0.136* | |
C8 | 0.1664 (6) | 0.6492 (6) | 0.6253 (4) | 0.0668 (14) | |
C9 | 0.2534 (7) | 0.4014 (7) | 0.5615 (5) | 0.0791 (15) | |
H9A | 0.3672 | 0.3846 | 0.5754 | 0.095* | |
H9B | 0.2292 | 0.4497 | 0.4704 | 0.095* | |
C10 | 0.2012 (10) | 0.2515 (9) | 0.6076 (8) | 0.126 (3) | |
H10A | 0.1297 | 0.2437 | 0.5447 | 0.151* | |
H10B | 0.2930 | 0.1627 | 0.6193 | 0.151* | |
C11 | 0.1210 (11) | 0.2487 (8) | 0.7269 (7) | 0.125 (3) | |
H11A | 0.1933 | 0.1864 | 0.7980 | 0.150* | |
H11B | 0.0307 | 0.2009 | 0.7314 | 0.150* | |
C12 | 0.0651 (7) | 0.4120 (6) | 0.7365 (5) | 0.0768 (15) | |
H12A | −0.0481 | 0.4515 | 0.7165 | 0.092* | |
H12B | 0.0846 | 0.4183 | 0.8222 | 0.092* | |
N1 | 0.4210 (5) | 0.2971 (5) | 0.2626 (4) | 0.0771 (13) | |
H1 | 0.4775 | 0.3348 | 0.3037 | 0.093* | |
N2 | 0.3437 (5) | 0.5463 (6) | 0.1280 (4) | 0.0739 (12) | |
N3 | 0.0697 (5) | 0.7250 (5) | 0.7032 (4) | 0.0746 (12) | |
H4 | 0.0100 | 0.6740 | 0.7564 | 0.089* | |
N4 | 0.1603 (5) | 0.5002 (5) | 0.6404 (4) | 0.0677 (11) | |
S1 | 0.22218 (19) | 0.3304 (2) | 0.07310 (14) | 0.0932 (6) | |
S2 | 0.28575 (19) | 0.74016 (18) | 0.51593 (13) | 0.0881 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.122 (5) | 0.099 (5) | 0.083 (4) | −0.026 (4) | −0.013 (4) | −0.024 (4) |
C2 | 0.071 (3) | 0.102 (4) | 0.040 (3) | −0.018 (3) | 0.003 (2) | −0.027 (3) |
C3 | 0.087 (4) | 0.116 (5) | 0.060 (3) | −0.020 (4) | −0.009 (3) | −0.007 (3) |
C4 | 0.202 (10) | 0.116 (6) | 0.127 (7) | −0.046 (6) | −0.058 (7) | 0.007 (5) |
C5 | 0.180 (8) | 0.100 (5) | 0.095 (5) | −0.040 (5) | −0.017 (5) | −0.025 (4) |
C6 | 0.102 (4) | 0.107 (5) | 0.052 (3) | −0.030 (4) | −0.004 (3) | −0.027 (3) |
C7 | 0.115 (5) | 0.085 (4) | 0.078 (4) | −0.024 (3) | 0.000 (3) | −0.032 (3) |
C8 | 0.071 (3) | 0.088 (4) | 0.042 (3) | −0.018 (3) | −0.014 (2) | −0.016 (3) |
C9 | 0.081 (4) | 0.100 (4) | 0.061 (3) | −0.013 (3) | −0.001 (3) | −0.035 (3) |
C10 | 0.154 (7) | 0.104 (5) | 0.136 (7) | −0.036 (5) | 0.023 (6) | −0.061 (5) |
C11 | 0.187 (8) | 0.088 (5) | 0.109 (6) | −0.044 (5) | 0.038 (5) | −0.036 (4) |
C12 | 0.093 (4) | 0.096 (4) | 0.050 (3) | −0.038 (3) | 0.000 (3) | −0.021 (3) |
N1 | 0.088 (3) | 0.093 (3) | 0.054 (3) | −0.023 (3) | −0.011 (2) | −0.022 (2) |
N2 | 0.081 (3) | 0.098 (3) | 0.041 (2) | −0.020 (3) | −0.009 (2) | −0.017 (2) |
N3 | 0.090 (3) | 0.086 (3) | 0.055 (3) | −0.031 (2) | 0.008 (2) | −0.023 (2) |
N4 | 0.083 (3) | 0.080 (3) | 0.045 (2) | −0.021 (2) | −0.001 (2) | −0.023 (2) |
S1 | 0.0962 (12) | 0.1408 (15) | 0.0594 (9) | −0.0374 (10) | −0.0056 (8) | −0.0447 (9) |
S2 | 0.0935 (12) | 0.1108 (13) | 0.0601 (9) | −0.0357 (9) | 0.0018 (8) | −0.0135 (8) |
C1—N1 | 1.418 (7) | C7—H7A | 0.9600 |
C1—H1A | 0.9600 | C7—H7B | 0.9600 |
C1—H1B | 0.9600 | C7—H7C | 0.9600 |
C1—H1C | 0.9600 | C8—N4 | 1.330 (6) |
C2—N2 | 1.316 (6) | C8—N3 | 1.358 (6) |
C2—N1 | 1.346 (6) | C8—S2 | 1.688 (5) |
C2—S1 | 1.705 (5) | C9—N4 | 1.475 (6) |
C3—C4 | 1.457 (9) | C9—C10 | 1.480 (9) |
C3—N2 | 1.464 (7) | C9—H9A | 0.9700 |
C3—H3A | 0.9700 | C9—H9B | 0.9700 |
C3—H3B | 0.9700 | C10—C11 | 1.422 (10) |
C4—C5 | 1.423 (10) | C10—H10A | 0.9700 |
C4—H4A | 0.9700 | C10—H10B | 0.9700 |
C4—H4B | 0.9700 | C11—C12 | 1.476 (8) |
C5—C6 | 1.473 (8) | C11—H11A | 0.9700 |
C5—H5A | 0.9700 | C11—H11B | 0.9700 |
C5—H5B | 0.9700 | C12—N4 | 1.462 (6) |
C6—N2 | 1.474 (6) | C12—H12A | 0.9700 |
C6—H6A | 0.9700 | C12—H12B | 0.9700 |
C6—H6B | 0.9700 | N1—H1 | 0.8600 |
C7—N3 | 1.432 (6) | N3—H4 | 0.8600 |
N1—C1—H1A | 109.5 | N4—C8—N3 | 115.8 (5) |
N1—C1—H1B | 109.5 | N4—C8—S2 | 122.6 (4) |
H1A—C1—H1B | 109.5 | N3—C8—S2 | 121.6 (4) |
N1—C1—H1C | 109.5 | N4—C9—C10 | 103.7 (5) |
H1A—C1—H1C | 109.5 | N4—C9—H9A | 111.0 |
H1B—C1—H1C | 109.5 | C10—C9—H9A | 111.0 |
N2—C2—N1 | 118.2 (4) | N4—C9—H9B | 111.0 |
N2—C2—S1 | 121.6 (4) | C10—C9—H9B | 111.0 |
N1—C2—S1 | 120.2 (4) | H9A—C9—H9B | 109.0 |
C4—C3—N2 | 104.4 (5) | C11—C10—C9 | 108.4 (6) |
C4—C3—H3A | 110.9 | C11—C10—H10A | 110.0 |
N2—C3—H3A | 110.9 | C9—C10—H10A | 110.0 |
C4—C3—H3B | 110.9 | C11—C10—H10B | 110.0 |
N2—C3—H3B | 110.9 | C9—C10—H10B | 110.0 |
H3A—C3—H3B | 108.9 | H10A—C10—H10B | 108.4 |
C5—C4—C3 | 111.2 (6) | C10—C11—C12 | 108.9 (6) |
C5—C4—H4A | 109.4 | C10—C11—H11A | 109.9 |
C3—C4—H4A | 109.4 | C12—C11—H11A | 109.9 |
C5—C4—H4B | 109.4 | C10—C11—H11B | 109.9 |
C3—C4—H4B | 109.4 | C12—C11—H11B | 109.9 |
H4A—C4—H4B | 108.0 | H11A—C11—H11B | 108.3 |
C4—C5—C6 | 108.3 (6) | N4—C12—C11 | 103.6 (5) |
C4—C5—H5A | 110.0 | N4—C12—H12A | 111.0 |
C6—C5—H5A | 110.0 | C11—C12—H12A | 111.0 |
C4—C5—H5B | 110.0 | N4—C12—H12B | 111.0 |
C6—C5—H5B | 110.0 | C11—C12—H12B | 111.0 |
H5A—C5—H5B | 108.4 | H12A—C12—H12B | 109.0 |
C5—C6—N2 | 104.9 (5) | C2—N1—C1 | 124.6 (5) |
C5—C6—H6A | 110.8 | C2—N1—H1 | 117.7 |
N2—C6—H6A | 110.8 | C1—N1—H1 | 117.7 |
C5—C6—H6B | 110.8 | C2—N2—C3 | 124.3 (5) |
N2—C6—H6B | 110.8 | C2—N2—C6 | 125.1 (4) |
H6A—C6—H6B | 108.8 | C3—N2—C6 | 110.6 (5) |
N3—C7—H7A | 109.5 | C8—N3—C7 | 123.9 (5) |
N3—C7—H7B | 109.5 | C8—N3—H4 | 118.0 |
H7A—C7—H7B | 109.5 | C7—N3—H4 | 118.0 |
N3—C7—H7C | 109.5 | C8—N4—C12 | 125.5 (4) |
H7A—C7—H7C | 109.5 | C8—N4—C9 | 123.2 (4) |
H7B—C7—H7C | 109.5 | C12—N4—C9 | 111.3 (4) |
N2—C3—C4—C5 | −1.7 (10) | C4—C3—N2—C6 | −4.0 (7) |
C3—C4—C5—C6 | 6.6 (11) | C5—C6—N2—C2 | −170.9 (6) |
C4—C5—C6—N2 | −8.6 (8) | C5—C6—N2—C3 | 7.8 (6) |
N4—C9—C10—C11 | −15.4 (8) | N4—C8—N3—C7 | 179.3 (5) |
C9—C10—C11—C12 | 21.4 (10) | S2—C8—N3—C7 | −1.0 (7) |
C10—C11—C12—N4 | −17.9 (8) | N3—C8—N4—C12 | −3.0 (7) |
N2—C2—N1—C1 | 179.6 (5) | S2—C8—N4—C12 | 177.3 (4) |
S1—C2—N1—C1 | −0.3 (7) | N3—C8—N4—C9 | 178.1 (4) |
N1—C2—N2—C3 | −179.7 (5) | S2—C8—N4—C9 | −1.6 (6) |
S1—C2—N2—C3 | 0.3 (7) | C11—C12—N4—C8 | −170.9 (5) |
N1—C2—N2—C6 | −1.1 (8) | C11—C12—N4—C9 | 8.1 (6) |
S1—C2—N2—C6 | 178.8 (4) | C10—C9—N4—C8 | −176.9 (5) |
C4—C3—N2—C2 | 174.7 (6) | C10—C9—N4—C12 | 4.1 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S2i | 0.86 | 2.73 | 3.472 (5) | 145 |
N3—H4···S1ii | 0.86 | 2.64 | 3.410 (5) | 150 |
C12—H12B···S1iii | 0.97 | 2.84 | 3.765 (5) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C6H12N2S |
Mr | 144.25 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.616 (2), 9.077 (2), 10.796 (3) |
α, β, γ (°) | 73.725 (14), 86.656 (15), 76.177 (16) |
V (Å3) | 787.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.957, 0.966 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 9119, 2699, 1385 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.079, 0.262, 1.04 |
No. of reflections | 2699 |
No. of parameters | 165 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.33 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S2i | 0.86 | 2.73 | 3.472 (5) | 144.8 |
N3—H4···S1ii | 0.86 | 2.64 | 3.410 (5) | 150.0 |
C12—H12B···S1iii | 0.97 | 2.84 | 3.765 (5) | 158.8 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x, y, z+1. |
Acknowledgements
The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. MNU, MS, AA and IK also gratefully acknowledge the financial support provided by the Higher Education Commission (HEC), Islamabad, Pakistan.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Jiang, J.-H. (2009). Acta Cryst. E65, o52. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I), (Fig. 1) has been synthesized as a derivative. The crystal structure of N-phenylpyrrolidine-1-carbothioamide related to this structure (I) has been published previously (Jiang, 2009). In (I), two molecules in the asymmetric unit are present, which differ slightly from each other geometrically. In one molecule, the N-methylthioformamide moiety A (C1/N1/C2/S1) and the pyrrolidine ring B (N2/C3–C6) are planar with r.m.s. deviation of 0.0010 Å and 0.0360 Å, respectively. The dihedral angle between A/B is 5.88 (46)°. In second molecule, the similar groups C (C7/N3/C8/S2) and D (N4/C9—C12) are also planar with r.m.s. deviation of 0.0032 Å and 0.0839 Å, respectively and the dihedral angle between C/D is 5.92 (39)°. Both molecules are interlinked through classical intramolecular H–bonding of N—H···S type (Table 1, Fig. 2) with C(4) chains (Bernstein et al., 1995) to form zigzag infinite one-dimensional polymeric chains extending along the a-axis. The polymeric chains are interlinked due to C—H···S type of H–bonding (Table 1, Fig. 2).