organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1796-o1797

(Z)-3-(4-Methyl­phen­yl)-2-[(2-phenyl­cyclo­hex-2-en-1-yl)imino]-1,3-thia­zol­idin-4-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 May 2012; accepted 14 May 2012; online 19 May 2012)

The title compound, C22H22N2OS, exists in a cis conformation with respect to the N=C bond. The cyclo­hexene ring adopts a distorted sofa conformation. The thia­zolidine ring is essentially planar with a maximum deviation of 0.025 (2) Å and forms dihedral angles of 63.50 (7) and 57.52 (6)° with the benzene rings. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds, generating R22(8) ring motifs, and forming infinite chains along the c axis. The crystal is further consolidated by C—H⋯π inter­actions.

Related literature

For details of thia­zolidin-4-one derivatives, see: Previtera et al. (1994[Previtera, T., Vigorita, M. G., Bisila, M., Orsini, F., Benetolla, F. & Bombieri, G. (1994). Eur. J. Med. Chem. 29, 317-324.]); Sharma & Kumar (2000[Sharma, R. C. & Kumar, D. (2000). J. Indian Chem. Soc. 77, 492-493.]); Kato et al. (1999a[Kato, T., Ozaki, T. & Tamura, K. (1999a). J. Med. Chem. 42, 3134-3146.],b[Kato, T., Ozaki, T. & Ohi, N. (1999b). Tetrahedron Asymmetry, 10, 3963-3968.]); Tanabe et al. (1991[Tanabe, Y., Suzukamo, G., Komuro, Y., Imanishi, N., Morooka, S., Enomoto, M., Kojima, A., Sanemitsu, Y. & Mizutani, M. (1991). Tetrahedron Lett. 32, 379-382.]); Rawal et al. (2005[Rawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771-6776.]); Voss et al. (2003[Voss, M. E., Carter, P. H., Tebben, A. J., Scherle, P. A., Brown, G. D. & Thompson, L. A. (2003). Bioorg. Med. Chem. Lett. 13, 533-538.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22N2OS

  • Mr = 362.48

  • Monoclinic, P 21 /c

  • a = 9.2252 (4) Å

  • b = 17.6978 (8) Å

  • c = 12.8898 (4) Å

  • β = 119.289 (2)°

  • V = 1835.43 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.36 × 0.30 × 0.11 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.979

  • 17337 measured reflections

  • 5335 independent reflections

  • 4496 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.05

  • 5335 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O1i 0.97 2.35 3.2415 (14) 153
C14—H14B⋯N1ii 0.97 2.57 3.4020 (13) 143
C17—H17ACg1iii 0.93 2.86 3.6385 (14) 142
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazolidin-4-one derivatives are known to exhibit diverse bioactivities such as anti-histaminic (Previtera et al., 1994), anti-microbial (Sharma & Kumar, 2000), (Kato et al., 1999a), PAF antagonist (Tanabe et al., 1991), cardioprotective (Kato et al., 1999b), anti HIV (Rawal et al., 2005), and tumor necrosis factor-α antagonist activities (Voss et al., 2003).

The title compound (Fig. 1) exists in cis configuration with respect to the N1 C13 bond [N1 C13 = 1.2611 (13) Å]. The cyclohexene (C7–C12) ring adopts a distorted sofa conformation with atoms C10 and C11 deviating from the mean plane through the remaining atoms in opposite directions by -0.320 (2) Å and 0.331 (1) Å respectively. The puckering parameters are Q = 0.4995 (14) Å, θ = 129.75 (16)° and ϕ = 32.3 (2)° (Cremer & Pople, 1975). The thiazolidine (S1/N2/C13–C15) ring is essentially planar with a maximum deviation of 0.025 (2) Å at atom C14 and forms dihedral angles of 63.50 (7) ° and 57.52 (6) ° with the benzene rings (C1–C6 and C16–C21) respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structure (Fun et al., 2011).

In the crystal structure (Fig. 2), molecules are linked by intermolecular C11—H11B···O1 and C14—H14B···N1 hydrogen bonds (Table 1), generating R22 (8) ring motifs (Bernstein et al., 1995) and forming infinite chains along the c axis. The crystal is further consolidated by C17—H17A···Cg1 interactions (Table 1), involving the centroid of the benzene ring (C1–C6; Cg1).

Related literature top

For details of thiazolidin-4-one derivatives, see: Previtera et al. (1994); Sharma & Kumar (2000); Kato et al. (1999a,b); Tanabe et al. (1991); Rawal et al. (2005); Voss et al. (2003). For a related structure, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 1-(2-phenylcyclohex-2-enyl)-3-(4-methyphenyl)thiourea (0.50 g, 2.3 mmol) and chloroacetyl chloride (0.35 g, 4.6 mmol) was heated to reflux in 1,4-dioxane (10 ml) at 100 °C for 5 h. The reaction mixture was washed with diluted sodium bicarbonate solution (25 ml) and dried over anhydrous sodium sulfate. The solvent was then evaporated under reduced pressure and the resulting residue was subjected to column chromatography using silica gel (60–120 mesh) as the stationary phase and petroleum ether-ethyl acetate (90:10) as the mobile phase to give the pure product. Yield: 0.64 g (77%); M.p.: 148–149 °C. Crystals suitable for X-ray study was obtained by recrystallization in dichloromethane.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.93–0.98 Å). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing one-dimensional chains along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(Z)-3-(4-Methylphenyl)-2-[(2-phenylcyclohex-2- en-1-yl)imino]-1,3-thiazolidin-4-one top
Crystal data top
C22H22N2OSF(000) = 768
Mr = 362.48Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7149 reflections
a = 9.2252 (4) Åθ = 2.6–30.1°
b = 17.6978 (8) ŵ = 0.19 mm1
c = 12.8898 (4) ÅT = 100 K
β = 119.289 (2)°Block, colorless
V = 1835.43 (13) Å30.36 × 0.30 × 0.11 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5335 independent reflections
Radiation source: fine-focus sealed tube4496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 30.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 912
Tmin = 0.935, Tmax = 0.979k = 2424
17337 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5577P]
where P = (Fo2 + 2Fc2)/3
5335 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H22N2OSV = 1835.43 (13) Å3
Mr = 362.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2252 (4) ŵ = 0.19 mm1
b = 17.6978 (8) ÅT = 100 K
c = 12.8898 (4) Å0.36 × 0.30 × 0.11 mm
β = 119.289 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5335 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4496 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.979Rint = 0.024
17337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
5335 reflectionsΔρmin = 0.22 e Å3
236 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25977 (4)0.358936 (15)0.31318 (2)0.01799 (8)
O10.45923 (11)0.16460 (5)0.43965 (7)0.01912 (17)
N10.22548 (12)0.30934 (5)0.10025 (8)0.01374 (18)
N20.32300 (12)0.22490 (5)0.25893 (8)0.01322 (17)
C10.13978 (15)0.28972 (6)0.05611 (10)0.0187 (2)
H1A0.11170.31360.01550.022*
C20.25218 (15)0.22988 (7)0.09409 (12)0.0234 (2)
H2A0.29790.21410.04740.028*
C30.29663 (17)0.19352 (8)0.20098 (13)0.0287 (3)
H3A0.37160.15360.22600.034*
C40.22788 (18)0.21747 (8)0.27017 (12)0.0304 (3)
H4A0.25810.19390.34240.036*
C50.11379 (16)0.27669 (7)0.23182 (11)0.0244 (3)
H5A0.06690.29150.27810.029*
C60.06845 (14)0.31438 (6)0.12433 (10)0.0174 (2)
C70.05345 (14)0.37747 (6)0.08264 (10)0.0163 (2)
C80.06412 (16)0.42580 (7)0.15897 (11)0.0227 (2)
H8A0.00770.41810.23970.027*
C90.18230 (18)0.49102 (7)0.12470 (12)0.0264 (3)
H9A0.12310.53520.17040.032*
H9B0.26880.47920.14420.032*
C100.26201 (17)0.50923 (6)0.00802 (11)0.0230 (2)
H10A0.35740.54190.03120.028*
H10B0.18270.53550.02390.028*
C110.31672 (15)0.43625 (6)0.07990 (10)0.0169 (2)
H11A0.37390.44820.16410.020*
H11B0.39390.40960.06220.020*
C120.16769 (14)0.38530 (6)0.05117 (9)0.0147 (2)
H12A0.10460.40680.08700.018*
C130.26470 (13)0.29626 (6)0.20699 (9)0.01284 (19)
C140.34921 (16)0.28935 (6)0.43065 (10)0.0177 (2)
H14A0.45070.30880.49680.021*
H14B0.27190.27760.45900.021*
C150.38603 (14)0.21927 (6)0.38074 (9)0.0145 (2)
C160.31678 (14)0.16074 (6)0.18854 (9)0.01263 (19)
C170.45986 (14)0.12024 (6)0.21625 (9)0.0150 (2)
H17A0.56220.13560.27810.018*
C180.44769 (15)0.05596 (6)0.14971 (10)0.0162 (2)
H18A0.54290.02810.16860.019*
C190.29590 (15)0.03267 (6)0.05560 (10)0.0158 (2)
C200.15440 (15)0.07559 (6)0.02786 (10)0.0161 (2)
H20A0.05260.06150.03600.019*
C210.16391 (14)0.13906 (6)0.09446 (10)0.0147 (2)
H21A0.06880.16680.07620.018*
C220.28358 (17)0.03726 (6)0.01526 (11)0.0216 (2)
H22A0.38940.06230.02010.032*
H22B0.25190.02320.09550.032*
H22C0.20160.07070.01540.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02608 (16)0.01403 (13)0.01548 (13)0.00194 (11)0.01144 (12)0.00189 (9)
O10.0227 (4)0.0196 (4)0.0144 (4)0.0029 (3)0.0086 (3)0.0039 (3)
N10.0142 (4)0.0123 (4)0.0127 (4)0.0011 (3)0.0050 (4)0.0001 (3)
N20.0160 (4)0.0119 (4)0.0107 (4)0.0013 (4)0.0057 (4)0.0000 (3)
C10.0143 (5)0.0179 (5)0.0201 (5)0.0045 (4)0.0055 (4)0.0026 (4)
C20.0146 (5)0.0204 (5)0.0317 (6)0.0025 (5)0.0087 (5)0.0046 (5)
C30.0160 (6)0.0230 (6)0.0357 (7)0.0027 (5)0.0040 (5)0.0039 (5)
C40.0246 (6)0.0316 (7)0.0247 (6)0.0042 (6)0.0042 (5)0.0092 (5)
C50.0214 (6)0.0286 (6)0.0185 (5)0.0005 (5)0.0063 (5)0.0023 (5)
C60.0135 (5)0.0178 (5)0.0159 (5)0.0028 (4)0.0033 (4)0.0020 (4)
C70.0141 (5)0.0160 (5)0.0151 (5)0.0027 (4)0.0044 (4)0.0016 (4)
C80.0225 (6)0.0236 (5)0.0170 (5)0.0011 (5)0.0057 (5)0.0050 (4)
C90.0285 (7)0.0219 (6)0.0255 (6)0.0005 (5)0.0107 (5)0.0092 (5)
C100.0254 (6)0.0137 (5)0.0284 (6)0.0002 (5)0.0121 (5)0.0021 (4)
C110.0178 (5)0.0136 (4)0.0171 (5)0.0007 (4)0.0067 (4)0.0015 (4)
C120.0168 (5)0.0119 (4)0.0137 (5)0.0019 (4)0.0060 (4)0.0007 (4)
C130.0126 (5)0.0118 (4)0.0133 (4)0.0013 (4)0.0057 (4)0.0022 (4)
C140.0244 (6)0.0168 (5)0.0141 (5)0.0000 (5)0.0110 (5)0.0011 (4)
C150.0153 (5)0.0164 (5)0.0122 (5)0.0022 (4)0.0072 (4)0.0009 (4)
C160.0161 (5)0.0108 (4)0.0115 (4)0.0001 (4)0.0070 (4)0.0001 (3)
C170.0145 (5)0.0164 (5)0.0118 (4)0.0007 (4)0.0047 (4)0.0008 (4)
C180.0181 (5)0.0154 (5)0.0157 (5)0.0035 (4)0.0089 (4)0.0020 (4)
C190.0214 (6)0.0122 (4)0.0154 (5)0.0004 (4)0.0103 (5)0.0001 (4)
C200.0160 (5)0.0151 (5)0.0153 (5)0.0026 (4)0.0061 (4)0.0018 (4)
C210.0137 (5)0.0136 (4)0.0161 (5)0.0010 (4)0.0067 (4)0.0007 (4)
C220.0280 (6)0.0150 (5)0.0241 (6)0.0016 (5)0.0146 (5)0.0052 (4)
Geometric parameters (Å, º) top
S1—C131.7796 (10)C9—H9B0.9700
S1—C141.8077 (11)C10—C111.5244 (15)
O1—C151.2112 (13)C10—H10A0.9700
N1—C131.2611 (13)C10—H10B0.9700
N1—C121.4702 (13)C11—C121.5305 (16)
N2—C151.3857 (13)C11—H11A0.9700
N2—C131.4072 (13)C11—H11B0.9700
N2—C161.4371 (12)C12—H12A0.9800
C1—C21.3928 (17)C14—C151.5104 (14)
C1—C61.4010 (16)C14—H14A0.9700
C1—H1A0.9300C14—H14B0.9700
C2—C31.3884 (19)C16—C171.3865 (15)
C2—H2A0.9300C16—C211.3905 (15)
C3—C41.390 (2)C17—C181.3957 (14)
C3—H3A0.9300C17—H17A0.9300
C4—C51.3935 (19)C18—C191.3929 (16)
C4—H4A0.9300C18—H18A0.9300
C5—C61.4043 (16)C19—C201.3971 (16)
C5—H5A0.9300C19—C221.5091 (15)
C6—C71.4863 (16)C20—C211.3903 (14)
C7—C81.3431 (15)C20—H20A0.9300
C7—C121.5251 (15)C21—H21A0.9300
C8—C91.4983 (18)C22—H22A0.9600
C8—H8A0.9300C22—H22B0.9600
C9—C101.5298 (18)C22—H22C0.9600
C9—H9A0.9700
C13—S1—C1492.68 (5)C12—C11—H11B109.4
C13—N1—C12119.17 (9)H11A—C11—H11B108.0
C15—N2—C13117.04 (8)N1—C12—C7107.95 (8)
C15—N2—C16121.57 (9)N1—C12—C11109.93 (9)
C13—N2—C16121.39 (8)C7—C12—C11111.66 (9)
C2—C1—C6120.91 (11)N1—C12—H12A109.1
C2—C1—H1A119.5C7—C12—H12A109.1
C6—C1—H1A119.5C11—C12—H12A109.1
C3—C2—C1120.59 (12)N1—C13—N2121.51 (9)
C3—C2—H2A119.7N1—C13—S1128.54 (8)
C1—C2—H2A119.7N2—C13—S1109.94 (7)
C2—C3—C4119.32 (12)C15—C14—S1107.95 (7)
C2—C3—H3A120.3C15—C14—H14A110.1
C4—C3—H3A120.3S1—C14—H14A110.1
C3—C4—C5120.29 (12)C15—C14—H14B110.1
C3—C4—H4A119.9S1—C14—H14B110.1
C5—C4—H4A119.9H14A—C14—H14B108.4
C4—C5—C6121.06 (12)O1—C15—N2124.34 (10)
C4—C5—H5A119.5O1—C15—C14124.16 (9)
C6—C5—H5A119.5N2—C15—C14111.49 (9)
C1—C6—C5117.82 (11)C17—C16—C21120.91 (10)
C1—C6—C7120.77 (10)C17—C16—N2120.46 (10)
C5—C6—C7121.40 (10)C21—C16—N2118.61 (10)
C8—C7—C6121.81 (11)C16—C17—C18118.87 (10)
C8—C7—C12120.86 (11)C16—C17—H17A120.6
C6—C7—C12117.33 (9)C18—C17—H17A120.6
C7—C8—C9125.32 (11)C19—C18—C17121.38 (10)
C7—C8—H8A117.3C19—C18—H18A119.3
C9—C8—H8A117.3C17—C18—H18A119.3
C8—C9—C10111.99 (10)C18—C19—C20118.51 (10)
C8—C9—H9A109.2C18—C19—C22121.05 (10)
C10—C9—H9A109.2C20—C19—C22120.44 (11)
C8—C9—H9B109.2C21—C20—C19120.82 (11)
C10—C9—H9B109.2C21—C20—H20A119.6
H9A—C9—H9B107.9C19—C20—H20A119.6
C11—C10—C9109.65 (10)C20—C21—C16119.48 (10)
C11—C10—H10A109.7C20—C21—H21A120.3
C9—C10—H10A109.7C16—C21—H21A120.3
C11—C10—H10B109.7C19—C22—H22A109.5
C9—C10—H10B109.7C19—C22—H22B109.5
H10A—C10—H10B108.2H22A—C22—H22B109.5
C10—C11—C12111.17 (10)C19—C22—H22C109.5
C10—C11—H11A109.4H22A—C22—H22C109.5
C12—C11—H11A109.4H22B—C22—H22C109.5
C10—C11—H11B109.4
C6—C1—C2—C30.30 (18)C15—N2—C13—N1170.63 (10)
C1—C2—C3—C40.06 (19)C16—N2—C13—N19.58 (16)
C2—C3—C4—C50.9 (2)C15—N2—C13—S18.88 (12)
C3—C4—C5—C61.3 (2)C16—N2—C13—S1170.91 (8)
C2—C1—C6—C50.13 (17)C14—S1—C13—N1176.19 (11)
C2—C1—C6—C7179.04 (10)C14—S1—C13—N23.28 (8)
C4—C5—C6—C10.94 (18)C13—S1—C14—C152.27 (9)
C4—C5—C6—C7179.84 (12)C13—N2—C15—O1170.26 (10)
C1—C6—C7—C8147.19 (12)C16—N2—C15—O19.95 (17)
C5—C6—C7—C833.94 (17)C13—N2—C15—C1410.80 (13)
C1—C6—C7—C1233.08 (15)C16—N2—C15—C14168.99 (10)
C5—C6—C7—C12145.79 (11)S1—C14—C15—O1173.60 (10)
C6—C7—C8—C9179.62 (11)S1—C14—C15—N27.46 (12)
C12—C7—C8—C90.66 (19)C15—N2—C16—C1755.74 (14)
C7—C8—C9—C1014.03 (18)C13—N2—C16—C17124.48 (11)
C8—C9—C10—C1144.52 (15)C15—N2—C16—C21122.51 (11)
C9—C10—C11—C1262.93 (13)C13—N2—C16—C2157.26 (13)
C13—N1—C12—C7152.62 (10)C21—C16—C17—C181.47 (15)
C13—N1—C12—C1185.36 (12)N2—C16—C17—C18176.74 (9)
C8—C7—C12—N1137.11 (11)C16—C17—C18—C190.97 (15)
C6—C7—C12—N142.63 (12)C17—C18—C19—C200.54 (15)
C8—C7—C12—C1116.16 (15)C17—C18—C19—C22179.50 (10)
C6—C7—C12—C11163.57 (9)C18—C19—C20—C211.59 (15)
C10—C11—C12—N1167.43 (9)C22—C19—C20—C21178.45 (10)
C10—C11—C12—C747.65 (12)C19—C20—C21—C161.12 (15)
C12—N1—C13—N2179.08 (10)C17—C16—C21—C200.45 (15)
C12—N1—C13—S10.33 (16)N2—C16—C21—C20177.80 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.972.353.2415 (14)153
C14—H14B···N1ii0.972.573.4020 (13)143
C17—H17A···Cg1iii0.932.863.6385 (14)142
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H22N2OS
Mr362.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.2252 (4), 17.6978 (8), 12.8898 (4)
β (°) 119.289 (2)
V3)1835.43 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.36 × 0.30 × 0.11
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.935, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
17337, 5335, 4496
Rint0.024
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.05
No. of reflections5335
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.972.353.2415 (14)153
C14—H14B···N1ii0.972.573.4020 (13)143
C17—H17A···Cg1iii0.932.863.6385 (14)142
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

CWO, HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Government and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, T., Ozaki, T. & Ohi, N. (1999b). Tetrahedron Asymmetry, 10, 3963–3968.  Web of Science CrossRef CAS Google Scholar
First citationKato, T., Ozaki, T. & Tamura, K. (1999a). J. Med. Chem. 42, 3134–3146.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPrevitera, T., Vigorita, M. G., Bisila, M., Orsini, F., Benetolla, F. & Bombieri, G. (1994). Eur. J. Med. Chem. 29, 317–324.  CrossRef CAS Web of Science Google Scholar
First citationRawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771–6776.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, R. C. & Kumar, D. (2000). J. Indian Chem. Soc. 77, 492–493.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanabe, Y., Suzukamo, G., Komuro, Y., Imanishi, N., Morooka, S., Enomoto, M., Kojima, A., Sanemitsu, Y. & Mizutani, M. (1991). Tetrahedron Lett. 32, 379–382.  CrossRef CAS Web of Science Google Scholar
First citationVoss, M. E., Carter, P. H., Tebben, A. J., Scherle, P. A., Brown, G. D. & Thompson, L. A. (2003). Bioorg. Med. Chem. Lett. 13, 533–538.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1796-o1797
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds