metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m827-m828

Aqua­bis­­[N′-(1,3-di­thio­lan-2-yl­idene)-2-hy­dr­oxy­benzohydrazidato(0.5−)-κ2N′,O]sodium(I)

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria
*Correspondence e-mail: a_beghidja@yahoo.fr

(Received 12 May 2012; accepted 21 May 2012; online 26 May 2012)

The title compound, [Na(C10H9.5N2O2S2)2(H2O)], is a mol­ecular sodium complex with N′-(1,3-dithio­lan-2-yl)-2-hy­droxy­benzohydrazide ligands with the negative charge spread evenly over both, and a water mol­ecule. The NaI ion coordination is distorted trigonal–bipyramidal, formed by two N and three O atoms, with the NaI ion lying on a twofold rotation axis. Intra­molecular N—H⋯O hydrogen bonds occur. Mol­ecules pack as discrete units and the crystal packing is stabilized by strong O—H⋯O hydrogen bonds, which give rise to chains along [010]; the chains are inter­linked by strong O—H⋯O hydrogen bonds.

Related literature

For general background to the 2-salicylihydrazono-1,3-dithiol­ane ligand (H2L) and its metal complexes, see: Beghidja et al. (2005[Beghidja, C., Wesolek, M. & Welter, R. (2005). Inorg. Chim. Acta, 358, 3881-3888.], 2006[Beghidja, C., Rogez, G., Kortus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140-3141.]); Bouchameni et al. (2011[Bouchameni, C., Beghidja, C., Beghidja, A., Rabu, P. & Welter, R. (2011). Polyhedron, 30, 1774-1778.]). For background to dithio­carbaza­tes, see: Wang et al. (2002[Wang, X., Deng, Z., Jin, B., Tian, Y. & Lin, X. (2002). Bull. Chem. Soc. Jpn, 75, 1269-1273.]); Zhou et al. (2007[Zhou, H. D., Wang, P., Cheng, L., Gao, Y., Zhu, Y., Wu, J., Tian, Y., Tao, Z., Jiang, M. & Fun, H. K. (2007). J. Mol. Struct. 826, 205-210.]) and for their biological activity, see: Tarafder et al. (2000[Tarafder, M. T. H., Ali, M. A., Saravanan, N., Weng, W. Y., Kumar, S., Umar-Tsafe, N. & Crouse, K. A. (2000). Transition Met. Chem. 25, 295-298.], 2001[Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2001). Polyhedron, 20, 2363-2370.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C10H9.5N2O2S2)2(H2O)]

  • Mr = 548.68

  • Monoclinic, C 2

  • a = 16.6960 (16) Å

  • b = 5.9330 (3) Å

  • c = 13.5240 (12) Å

  • β = 117.804 (3)°

  • V = 1184.99 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 298 K

  • 0.14 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 3660 measured reflections

  • 2463 independent reflections

  • 2083 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.00

  • 2463 reflections

  • 161 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 970 Friedel pairs

  • Flack parameter: −0.06 (13)

Table 1
Selected bond lengths (Å)

Na1—O1 2.320 (3)
Na1—O3 2.214 (6)
Na1—N2 2.666 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 1.88 2.596 (4) 137
O2—H2⋯O2i 0.89 (5) 1.61 (9) 2.467 (4) 160 (14)
O3—H3⋯O1ii 0.95 (4) 1.90 (4) 2.788 (5) 155 (4)
Symmetry codes: (i) -x+1, y, -z+2; (ii) -x+1, y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dithiocarbazate R—NH2NHCS2 (DTC) and its substituted compounds remain of interest to researchers because of their wide variation in structure and properties (Zhou et al., 2007; Wang et al., 2002). Some of these compounds have been widely studies for their antibacterial and antifungal activities (Tarafder et al., 2000; Tarafder et al., 2001). The ligand H2L was synthesized as previously described (Beghidja et al., 2005). The molecular structure of the title compound is illustrated in Fig. 1. The sodium cation is chelated by two H1.5L-1/2 bidentate anions coordinated by the hydrazide group via O1 and N2 atoms. Na1—O1 = 2.316 (3) Å, Na1—N2 = 2.664 (3) Å. The geometry around the metal is a distorted trigonal bipyramid with a water molecule lying in the axial position through O3. Na1—O3 = 2.213 (5) Å. The crystal structure can be described as a one-dimensional set of chains, interlinked by strong hydrogen-bonds type O—H···O, along the b axis, between O3—H3···O1. These chains are interconnected along the c axis via strong hydrogen-bonds type O—H···O between O2—H2···O2 (Fig 2).

Related literature top

For general background to the 2-salicylihydrazono-1,3-dithiolane ligand (H2L) and its metal complexes, see: Beghidja et al. (2005, 2006); Bouchameni et al. (2011). For background to dithiocarbazates, see: Wang et al. (2002); Zhou et al. (2007) and for their biological activity, see: Tarafder et al. (2000, 2001).

Experimental top

The reaction of H2L (0.05 g, 2 x 10 -4 mol) with Mn(OH)3 (0.0106 g, 10 -4 mol) and NaOH (0.01 g, 2 x 10 -4 mol) in ethanol solution leads to a yellow solution which was left to stand undisturbed at room temperature. Several days later, x-ray quality colorless single crystals were obtained by slow evaporation, which were filtrated and characterized.

Refinement top

The positions of the H atoms of the water molecule and hydroxyl group were located in the electron density maps; other H atoms were placed in calculated positions and refined as riding with C—H = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic groups; N—H = 0.86 Å, Uiso = 1.2Ueq(N); O—H = 0.90-0.95 Å, Uiso = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line. Symmetry code: (a) -x+1, y, -z+1.
[Figure 2] Fig. 2. Mercury view of the crystal structure of title compound along the a axis showing the two-dimensional network via a strong hydrogen bonds through O—H···O atoms.
Aquabis[N'-(1,3-dithiolan-2-ylidene)-2-hydroxybenzohydrazidato(0.5-)- κ2N',O]sodium(I) top
Crystal data top
[Na(C10H9.5N2O2S2)2(H2O)]F(000) = 568
Mr = 548.68Dx = 1.538 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2559 reflections
a = 16.6960 (16) Åθ = 1.0–27.5°
b = 5.9330 (3) ŵ = 0.46 mm1
c = 13.5240 (12) ÅT = 298 K
β = 117.804 (3)°Plates, colorless
V = 1184.99 (17) Å30.14 × 0.10 × 0.08 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2083 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.050
Horizonally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 1.7°
Detector resolution: 9 pixels mm-1h = 2121
ϕ scans, and ω scans with κ offsetsk = 67
3660 measured reflectionsl = 1317
2463 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0458P)2 + 2.9944P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.021
2463 reflectionsΔρmax = 0.33 e Å3
161 parametersΔρmin = 0.43 e Å3
5 restraintsAbsolute structure: Flack (1983), 970 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (13)
Crystal data top
[Na(C10H9.5N2O2S2)2(H2O)]V = 1184.99 (17) Å3
Mr = 548.68Z = 2
Monoclinic, C2Mo Kα radiation
a = 16.6960 (16) ŵ = 0.46 mm1
b = 5.9330 (3) ÅT = 298 K
c = 13.5240 (12) Å0.14 × 0.10 × 0.08 mm
β = 117.804 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2083 reflections with I > 2σ(I)
3660 measured reflectionsRint = 0.050
2463 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126Δρmax = 0.33 e Å3
S = 1.00Δρmin = 0.43 e Å3
2463 reflectionsAbsolute structure: Flack (1983), 970 Friedel pairs
161 parametersAbsolute structure parameter: 0.06 (13)
5 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.34168 (7)0.79324 (19)0.76027 (8)0.0330 (3)
S20.33261 (8)1.0904 (2)0.57897 (10)0.0388 (4)
Na10.500000.7068 (4)0.500000.0324 (8)
O10.5618 (2)0.4475 (5)0.6448 (2)0.0318 (9)
O20.5000 (2)0.3636 (5)0.9088 (2)0.0348 (10)
O30.500001.0799 (9)0.500000.057 (2)
N10.4834 (2)0.5736 (6)0.7318 (2)0.0245 (10)
N20.4434 (2)0.7412 (6)0.6540 (3)0.0261 (10)
C10.5421 (3)0.4301 (7)0.7235 (3)0.0261 (12)
C20.5809 (3)0.2538 (7)0.8092 (3)0.0249 (11)
C30.5575 (3)0.2237 (7)0.8968 (3)0.0282 (11)
C40.5962 (3)0.0414 (8)0.9695 (4)0.0393 (16)
C50.6562 (3)0.1025 (9)0.9594 (4)0.0400 (16)
C60.6809 (3)0.0701 (8)0.8755 (4)0.0373 (14)
C70.6425 (3)0.1041 (8)0.8012 (3)0.0325 (12)
C80.3821 (3)0.8554 (7)0.6639 (3)0.0262 (11)
C90.2806 (3)1.0562 (9)0.7390 (4)0.0400 (16)
C100.2425 (3)1.1176 (9)0.6176 (4)0.0453 (16)
H10.470400.560200.787500.0290*
H20.512 (8)0.379 (19)0.980 (3)0.0680*0.500
H30.470 (4)1.171 (8)0.435 (3)0.0680*
H40.580300.016701.027600.0470*
H50.681100.224801.010000.0480*
H60.723800.167000.869600.0450*
H70.658200.123600.742600.0390*
H9A0.231101.038500.759200.0480*
H9B0.321901.176100.786400.0480*
H10A0.219501.274300.605300.0540*
H10B0.191801.015800.571300.0540*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0373 (6)0.0381 (6)0.0316 (5)0.0081 (5)0.0228 (5)0.0031 (5)
S20.0465 (7)0.0349 (6)0.0353 (6)0.0119 (5)0.0194 (5)0.0097 (5)
Na10.0457 (14)0.0278 (13)0.0329 (12)0.00000.0260 (11)0.0000
O10.0435 (17)0.0330 (17)0.0300 (15)0.0067 (13)0.0265 (14)0.0027 (12)
O20.0449 (18)0.0407 (19)0.0274 (15)0.0150 (15)0.0240 (15)0.0072 (13)
O30.113 (5)0.029 (3)0.040 (3)0.00000.044 (3)0.0000
N10.0286 (17)0.0287 (18)0.0195 (15)0.0012 (15)0.0139 (13)0.0016 (14)
N20.0321 (18)0.0259 (19)0.0225 (16)0.0035 (15)0.0145 (14)0.0029 (12)
C10.030 (2)0.028 (2)0.025 (2)0.0002 (17)0.0167 (17)0.0024 (16)
C20.0249 (18)0.027 (2)0.0217 (17)0.0008 (16)0.0100 (14)0.0048 (15)
C30.030 (2)0.033 (2)0.0213 (18)0.0045 (17)0.0116 (16)0.0001 (16)
C40.046 (3)0.041 (3)0.029 (2)0.008 (2)0.016 (2)0.0058 (18)
C50.045 (3)0.036 (3)0.029 (2)0.012 (2)0.009 (2)0.0066 (19)
C60.036 (2)0.033 (3)0.037 (2)0.011 (2)0.012 (2)0.002 (2)
C70.033 (2)0.036 (2)0.033 (2)0.001 (2)0.0193 (18)0.005 (2)
C80.029 (2)0.030 (2)0.0190 (18)0.0005 (16)0.0108 (16)0.0010 (15)
C90.038 (2)0.044 (3)0.043 (3)0.009 (2)0.023 (2)0.003 (2)
C100.040 (2)0.045 (3)0.045 (3)0.022 (2)0.015 (2)0.003 (2)
Geometric parameters (Å, º) top
S1—C81.764 (5)N1—H10.8800
S1—C91.812 (6)C1—C21.469 (6)
S2—C81.750 (4)C2—C31.421 (6)
S2—C101.815 (6)C2—C71.401 (7)
Na1—O12.320 (3)C3—C41.401 (6)
Na1—O32.214 (6)C4—C51.371 (8)
Na1—N22.666 (4)C5—C61.390 (7)
Na1—O1i2.320 (3)C6—C71.374 (6)
Na1—N2i2.666 (4)C9—C101.503 (7)
O1—C11.256 (5)C4—H40.9500
O2—C31.335 (6)C5—H50.9500
O2—H20.89 (5)C6—H60.9500
O3—H3i0.95 (4)C7—H70.9500
O3—H30.95 (4)C9—H9A0.9900
N1—N21.373 (5)C9—H9B0.9900
N1—C11.342 (6)C10—H10A0.9900
N2—C81.285 (6)C10—H10B0.9900
S1···N12.880 (4)C3···H12.5100
S1···C4ii3.614 (5)C3···H2ix2.60 (11)
S2···C10iii3.660 (5)C4···H9Bxii3.0300
S2···O33.4263 (15)C4···H2ix2.98 (12)
S1···H12.4300C4···H4ix2.9700
S1···H7iv3.1300C6···H5xiii2.9300
S1···H4ii2.8600C7···H5xiii3.0300
S2···H10Aiii2.9100C7···H3viii2.88 (4)
S2···H10Bv3.1500C9···H6xiv2.8800
Na1···C10vi3.633 (6)C9···H4ii2.9300
Na1···C10iii3.633 (6)H1···S12.4300
Na1···H10Bvi3.1000H1···O21.8800
Na1···H10Biii3.1000H1···C32.5100
O1···O3vii2.788 (5)H1···H22.5900
O1···N22.681 (5)H2···H12.5900
O1···C9vi3.323 (7)H2···H42.3800
O1···O3viii2.788 (5)H2···O2ix1.61 (9)
O1···C10vi3.360 (7)H2···C3ix2.60 (11)
O2···C4ix3.378 (6)H2···C4ix2.98 (12)
O2···N12.596 (4)H3···O1xi1.90 (4)
O2···C3ix3.298 (5)H3···C1xi2.57 (4)
O2···O2ix2.467 (4)H3···C2xi3.04 (4)
O3···O1x2.788 (5)H3···C7xi2.88 (4)
O3···S2i3.4263 (15)H3···H7xi2.3700
O3···O1xi2.788 (5)H4···H22.3800
O3···S23.4263 (15)H4···S1xii2.8600
O1···H72.4600H4···O2ix2.8000
O1···H10Bvi2.8100H4···C4ix2.9700
O1···H3viii1.90 (4)H4···C9xii2.9300
O1···H9Avi2.5700H4···H4ix2.4200
O2···H2ix1.61 (8)H4···H9Bxii2.4600
O2···H9Bvii2.8700H5···C6xv2.9300
O2···H4ix2.8000H5···C7xv3.0300
O2···H11.8800H6···C9xvi2.8800
N1···S12.880 (4)H6···H9Axvi2.3400
N1···O12.257 (5)H6···H9Bxvi2.5600
N1···O22.596 (4)H7···O12.4600
N2···O12.681 (5)H7···H3viii2.3700
C3···O2ix3.298 (5)H7···S1vi3.1300
C4···O2ix3.378 (6)H9A···O1iv2.5700
C4···S1xii3.614 (5)H9A···C1iv3.0300
C4···C9xii3.495 (7)H9A···H6xiv2.3400
C9···O1iv3.323 (7)H9B···O2x2.8700
C9···C4ii3.495 (7)H9B···C4ii3.0300
C10···O1iv3.360 (7)H9B···H4ii2.4600
C10···Na1iv3.633 (6)H9B···H6xiv2.5600
C10···Na1v3.633 (6)H10A···S2v2.9100
C10···S2v3.660 (5)H10B···Na1iv3.1000
C1···H9Avi3.0300H10B···O1iv2.8100
C1···H3viii2.57 (4)H10B···S2iii3.1500
C2···H3viii3.04 (4)H10B···Na1v3.1000
C8—S1—C994.8 (2)O2—C3—C2121.1 (4)
C8—S2—C1094.8 (2)O2—C3—C4121.2 (4)
O1—Na1—O3131.54 (8)C3—C4—C5122.0 (5)
O1—Na1—N264.63 (11)C4—C5—C6120.3 (5)
O1—Na1—O1i96.91 (13)C5—C6—C7119.1 (5)
O1—Na1—N2i122.01 (13)C2—C7—C6122.0 (4)
O3—Na1—N285.61 (9)S1—C8—S2115.2 (3)
O1i—Na1—O3131.54 (8)S1—C8—N2124.4 (3)
O3—Na1—N2i85.61 (9)S2—C8—N2120.5 (3)
O1i—Na1—N2122.01 (13)S1—C9—C10107.6 (4)
N2—Na1—N2i171.22 (15)S2—C10—C9107.9 (4)
O1i—Na1—N2i64.63 (11)C3—C4—H4119.00
Na1—O1—C1125.5 (3)C5—C4—H4119.00
C3—O2—H2113 (8)C4—C5—H5120.00
Na1—O3—H3125 (3)C6—C5—H5120.00
Na1—O3—H3i125 (3)C5—C6—H6120.00
H3—O3—H3i111 (4)C7—C6—H6120.00
N2—N1—C1120.6 (3)C2—C7—H7119.00
Na1—N2—N1108.7 (2)C6—C7—H7119.00
Na1—N2—C8135.3 (3)S1—C9—H9A110.00
N1—N2—C8115.4 (4)S1—C9—H9B110.00
C1—N1—H1120.00C10—C9—H9A110.00
N2—N1—H1120.00C10—C9—H9B110.00
N1—C1—C2117.2 (4)H9A—C9—H9B108.00
O1—C1—N1120.6 (4)S2—C10—H10A110.00
O1—C1—C2122.3 (4)S2—C10—H10B110.00
C1—C2—C7117.4 (4)C9—C10—H10A110.00
C3—C2—C7118.8 (4)C9—C10—H10B110.00
C1—C2—C3123.8 (4)H10A—C10—H10B108.00
C2—C3—C4117.8 (4)
C9—S1—C8—S211.2 (3)N2—N1—C1—C2179.2 (4)
C9—S1—C8—N2168.7 (4)Na1—N2—C8—S1163.7 (2)
C8—S1—C9—C1035.8 (4)Na1—N2—C8—S216.4 (6)
C10—S2—C8—S111.6 (3)N1—N2—C8—S15.8 (5)
C10—S2—C8—N2168.5 (4)N1—N2—C8—S2174.1 (3)
C8—S2—C10—C936.2 (4)O1—C1—C2—C3177.5 (4)
O3—Na1—O1—C160.2 (4)O1—C1—C2—C70.7 (6)
N2—Na1—O1—C12.4 (3)N1—C1—C2—C32.1 (6)
O1i—Na1—O1—C1119.8 (3)N1—C1—C2—C7179.8 (4)
N2i—Na1—O1—C1175.9 (3)C1—C2—C3—O22.7 (7)
O1—Na1—N2—N11.8 (2)C1—C2—C3—C4176.8 (4)
O1—Na1—N2—C8171.8 (5)C7—C2—C3—O2179.1 (4)
O3—Na1—N2—N1142.4 (2)C7—C2—C3—C41.4 (6)
O3—Na1—N2—C847.6 (4)C1—C2—C7—C6178.4 (4)
O1i—Na1—N2—N180.2 (3)C3—C2—C7—C60.1 (7)
O1i—Na1—N2—C889.8 (4)O2—C3—C4—C5179.2 (4)
Na1—O1—C1—N12.7 (6)C2—C3—C4—C51.3 (7)
Na1—O1—C1—C2176.9 (3)C3—C4—C5—C60.3 (8)
C1—N1—N2—Na11.5 (4)C4—C5—C6—C71.8 (8)
C1—N1—N2—C8173.7 (4)C5—C6—C7—C21.7 (7)
N2—N1—C1—O10.4 (6)S1—C9—C10—S248.2 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2; (iii) x+1/2, y1/2, z+1; (iv) x1/2, y+1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y1/2, z; (vii) x, y1, z; (viii) x+1, y1, z+1; (ix) x+1, y, z+2; (x) x, y+1, z; (xi) x+1, y+1, z+1; (xii) x+1, y1, z+2; (xiii) x+3/2, y+1/2, z+2; (xiv) x1/2, y+3/2, z; (xv) x+3/2, y1/2, z+2; (xvi) x+1/2, y3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S10.88002.43002.880 (4)112.00
N1—H1···O20.88001.88002.596 (4)137.00
O2—H2···O2ix0.89 (5)1.61 (9)2.467 (4)160 (14)
O3—H3···O1xi0.95 (4)1.90 (4)2.788 (5)155 (4)
C4—H4···S1xii0.952.863.614 (5)137
C7—H7···O10.952.462.790 (5)100
C9—H9A···O1iv0.992.573.323 (7)133
Symmetry codes: (iv) x1/2, y+1/2, z; (ix) x+1, y, z+2; (xi) x+1, y+1, z+1; (xii) x+1, y1, z+2.

Experimental details

Crystal data
Chemical formula[Na(C10H9.5N2O2S2)2(H2O)]
Mr548.68
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)16.6960 (16), 5.9330 (3), 13.5240 (12)
β (°) 117.804 (3)
V3)1184.99 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.14 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3660, 2463, 2083
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.00
No. of reflections2463
No. of parameters161
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.43
Absolute structureFlack (1983), 970 Friedel pairs
Absolute structure parameter0.06 (13)

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Na1—O12.320 (3)Na1—N22.666 (4)
Na1—O32.214 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.88001.88002.596 (4)137.00
O2—H2···O2i0.89 (5)1.61 (9)2.467 (4)160 (14)
O3—H3···O1ii0.95 (4)1.90 (4)2.788 (5)155 (4)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the MESRS (Algeria) for financial support (PNR project).

References

First citationBeghidja, C., Rogez, G., Kortus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140–3141.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBeghidja, C., Wesolek, M. & Welter, R. (2005). Inorg. Chim. Acta, 358, 3881–3888.  Web of Science CSD CrossRef CAS Google Scholar
First citationBouchameni, C., Beghidja, C., Beghidja, A., Rabu, P. & Welter, R. (2011). Polyhedron, 30, 1774–1778.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Ali, M. A., Saravanan, N., Weng, W. Y., Kumar, S., Umar-Tsafe, N. & Crouse, K. A. (2000). Transition Met. Chem. 25, 295–298.  Web of Science CrossRef CAS Google Scholar
First citationTarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2001). Polyhedron, 20, 2363–2370.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X., Deng, Z., Jin, B., Tian, Y. & Lin, X. (2002). Bull. Chem. Soc. Jpn, 75, 1269–1273.  Web of Science CrossRef CAS Google Scholar
First citationZhou, H. D., Wang, P., Cheng, L., Gao, Y., Zhu, Y., Wu, J., Tian, Y., Tao, Z., Jiang, M. & Fun, H. K. (2007). J. Mol. Struct. 826, 205–210.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m827-m828
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds