organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­ethanaminium iodide

aDepartment of Pure & Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and bDepartment of Chemistry and Biochemistry, Chepkoilel University College, PO Box 1125-30100, Eldoret, Kenya
*Correspondence e-mail: okothmdo@mu.ac.ke

(Received 24 April 2012; accepted 7 May 2012; online 16 May 2012)

The title salt, [NH3CH2CH2NH2]+·I, has an array structure based on strong inter­molecular N—H⋯N hydrogen bonding formed between the ammonium and amine groups of adjacent cations. This inter­action gives a helical chain of cations that runs parallel to the b axis. The four remaining NH group H atoms all form hydrogen bonds to the iodide anion, and these iodide anions lie in channels parallel to the cation–cation chains.

Related literature

For syntheses and structures of salt forms of the related ethyl­ene-1,2-diammonium, see: Chen (2009[Chen, L.-Z. (2009). Acta Cryst. E65, o2625.]); Saidi et al. (2011[Saidi, K., Kamoun, S. & Ayedi, H. F. (2011). J. Chem. Crystallogr. 41, 1258-1261.]). For a structural example of a complex of ethyl­ene-1,2-diammonium, see: Zhang et al. (2006[Zhang, Z.-J., Guo, G.-C., Xu, G., Fu, M.-L., Zou, J.-P. & Huang, J.-S. (2006). Inorg. Chem. 45, 10028-10030.]). For the synthesis that gave the title compound as a by-product, see: Kennedy et al. (2011[Kennedy, A. R., Lutta, S. T., Morrison, C. A., Okoth, M. O. & Orang'o, D. M. (2011). Acta Cryst. E67, o682-o683.]). For C–N bond length changes in another monoprotonated symmetrical diamine, see: Craig et al. (2012[Craig, G. E., Johnson, C. & Kennedy, A. R. (2012). Acta Cryst. E68, o787.]).

[Scheme 1]

Experimental

Crystal data
  • C2H9N2+·I

  • Mr = 188.01

  • Orthorhombic, P b c a

  • a = 8.1380 (2) Å

  • b = 8.6259 (2) Å

  • c = 16.7854 (6) Å

  • V = 1178.29 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.29 mm−1

  • T = 123 K

  • 0.28 × 0.08 × 0.04 mm

Data collection
  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.405, Tmax = 0.805

  • 13735 measured reflections

  • 1675 independent reflections

  • 1405 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.035

  • S = 1.08

  • 1675 reflections

  • 83 parameters

  • All H-atom parameters refined

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 1.06 (2) 1.75 (2) 2.805 (2) 173.0 (19)
N1—H2N⋯I1 0.882 (19) 3.231 (18) 3.6502 (14) 111.6 (13)
N1—H2N⋯I1ii 0.882 (19) 2.820 (19) 3.6047 (14) 148.9 (15)
N1—H3N⋯I1iii 0.84 (2) 2.78 (2) 3.5713 (16) 157.9 (16)
N2—H4N⋯I1iv 0.84 (2) 2.96 (2) 3.7346 (16) 155.5 (16)
N2—H5N⋯I1v 0.866 (19) 3.152 (19) 3.9328 (15) 151.2 (14)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iv) -x+1, -y, -z+1; (v) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Despite the common use of ethylene-1,2-diamine as a ligand, there are suprisingly few metal containing crystal structures that feature its cationic form ethylene-1,2-diammonium (for an example see Zhang et al., 2006) and only two structures of simple salt forms of ethylene-1,2-diammonium (Chen, 2009; Saidi et al., 2011). There appears to be no previous reports of structures that contain the singley protonated cation, NH3CH2CH2NH2.

Crystals of ethylene-2-amine-1-ammonium iodide (I) were recovered whilst trying to replicate the synthesis of the macrocyclic species 5,7,7,12,14,14-hexamethyl-4,8-diaza-1,11 -diazoniocyclotetradeca-4,11-diene diiodide, the first step of which is addition of HI to ethylene-1,2-diamine in ethanol (Kennedy et al., 2011). Investigation of the structure cleary showed that the base is protonated at only one site, see Figure 1. This is confirmed by location and independent refinement of the hydrogen atoms and by the slight lengthening of the C1—N1 bond as compared to the C2—N2 bond (compare 1.484 (2) and 1.467 (2) Å). Similar differences are seen in other symmetrical diamines that have been monoprotonated (see for example Craig et al., 2012).

Atom H1N is a hydrogen bond donor that interacts with N2 to form the relatively short cation to cation hydrogen bond that gives the one dimensional helical chain running in the b direction, as shown in Figure 2. The four other N—H hydrogen atoms all interact with the iodide anion (N···I range 3.5713 (16) to 3.9328 (15) Å), see Table 1 for details. These interactions combine to give the packing motif shown in Figure 3, with channels of anions parallel to the b direction and thus also parallel to the cation-cation hydrogen bonded chains.

Related literature top

For syntheses and structures of salt forms of the related ethylene-1,2-diammonium, see: Chen (2009); Saidi et al. (2011). For a structural example of a complex of ethylene-1,2-diammonium, see: Zhang et al. (2006). For the synthesis that gave the title compound as a by-product, see: Kennedy et al. (2011). For C–N bond length changes in another monoprotonated symmetrical diamine, see: Craig et al. (2012).

Experimental top

Crystals of (I) were obtained from ethanol solution.

Refinement top

All the H-atoms were found through difference synthesis and refined isotropically. The N1 to H1N distance is 1.06 (2) Å. This forms part of the N—H···N hydrogen bond and may reflect some small degree of positional disorder over two sites.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level with H-atoms drawn as spheres of arbitary size.
[Figure 2] Fig. 2. Hydrogen bonding forms helical, one-dimensional chains of cations that propagate in the crystallographic b direction.
[Figure 3] Fig. 3. Packing in (I) viewed along the b direction.
2-Aminoethanaminium iodide top
Crystal data top
C2H9N2+·IF(000) = 704
Mr = 188.01Dx = 2.120 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7738 reflections
a = 8.1380 (2) Åθ = 3.4–30.4°
b = 8.6259 (2) ŵ = 5.29 mm1
c = 16.7854 (6) ÅT = 123 K
V = 1178.29 (6) Å3Cut needle, colourless
Z = 80.28 × 0.08 × 0.04 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
1675 independent reflections
Radiation source: fine-focus sealed tube1405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 30.5°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1111
Tmin = 0.405, Tmax = 0.805k = 1212
13735 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016All H-atom parameters refined
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0188P)2 + 0.0175P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
1675 reflectionsΔρmax = 0.58 e Å3
83 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00618 (17)
Crystal data top
C2H9N2+·IV = 1178.29 (6) Å3
Mr = 188.01Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.1380 (2) ŵ = 5.29 mm1
b = 8.6259 (2) ÅT = 123 K
c = 16.7854 (6) Å0.28 × 0.08 × 0.04 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
1675 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1405 reflections with I > 2σ(I)
Tmin = 0.405, Tmax = 0.805Rint = 0.025
13735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.035All H-atom parameters refined
S = 1.08Δρmax = 0.58 e Å3
1675 reflectionsΔρmin = 0.39 e Å3
83 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Oxford Diffraction, 2010). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.153737 (12)0.243717 (9)0.639779 (7)0.01478 (5)
N10.57239 (17)0.09977 (16)0.66467 (10)0.0152 (3)
N20.91366 (18)0.12957 (16)0.57234 (10)0.0166 (3)
C10.72638 (19)0.00806 (18)0.65975 (11)0.0156 (3)
C20.7645 (2)0.03399 (18)0.57391 (10)0.0164 (3)
H10.720 (2)0.083 (2)0.6923 (11)0.022 (5)*
H20.812 (2)0.073 (2)0.6768 (12)0.025 (5)*
H30.677 (2)0.0965 (19)0.5534 (11)0.020 (5)*
H40.771 (2)0.0590 (19)0.5396 (11)0.018 (4)*
H1N0.573 (3)0.206 (3)0.6334 (13)0.030 (5)*
H2N0.487 (2)0.042 (2)0.6523 (12)0.027 (5)*
H3N0.561 (2)0.131 (2)0.7119 (12)0.028 (6)*
H4N0.932 (2)0.161 (2)0.5259 (13)0.029 (5)*
H5N0.998 (2)0.073 (2)0.5848 (13)0.029 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01452 (7)0.01487 (7)0.01494 (8)0.00109 (3)0.00020 (4)0.00022 (4)
N10.0146 (7)0.0161 (7)0.0150 (8)0.0014 (5)0.0018 (6)0.0016 (5)
N20.0151 (7)0.0194 (7)0.0152 (8)0.0000 (5)0.0019 (6)0.0009 (6)
C10.0140 (8)0.0188 (8)0.0141 (8)0.0001 (6)0.0006 (6)0.0007 (6)
C20.0164 (8)0.0191 (7)0.0136 (8)0.0010 (6)0.0007 (7)0.0010 (6)
Geometric parameters (Å, º) top
N1—C11.484 (2)N2—H5N0.866 (19)
N1—H1N1.06 (2)C1—C21.518 (2)
N1—H2N0.882 (19)C1—H10.959 (18)
N1—H3N0.84 (2)C1—H20.937 (19)
N2—C21.467 (2)C2—H30.959 (17)
N2—H4N0.84 (2)C2—H40.989 (18)
C1—N1—H1N115.5 (12)C2—C1—H1110.8 (11)
C1—N1—H2N110.4 (12)N1—C1—H2107.0 (11)
H1N—N1—H2N112.4 (17)C2—C1—H2106.3 (13)
C1—N1—H3N108.5 (13)H1—C1—H2110.7 (18)
H1N—N1—H3N100.7 (16)N2—C2—C1108.70 (14)
H2N—N1—H3N108.6 (17)N2—C2—H3107.1 (10)
C2—N2—H4N110.2 (13)C1—C2—H3108.8 (11)
C2—N2—H5N109.6 (12)N2—C2—H4113.8 (10)
H4N—N2—H5N105.2 (18)C1—C2—H4111.7 (11)
N1—C1—C2110.67 (14)H3—C2—H4106.6 (15)
N1—C1—H1111.2 (11)
N1—C1—C2—N2177.75 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i1.06 (2)1.75 (2)2.805 (2)173.0 (19)
N1—H2N···I10.882 (19)3.231 (18)3.6502 (14)111.6 (13)
N1—H2N···I1ii0.882 (19)2.820 (19)3.6047 (14)148.9 (15)
N1—H3N···I1iii0.84 (2)2.78 (2)3.5713 (16)157.9 (16)
N2—H4N···I1iv0.84 (2)2.96 (2)3.7346 (16)155.5 (16)
N2—H5N···I1v0.866 (19)3.152 (19)3.9328 (15)151.2 (14)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y, z+3/2; (iv) x+1, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC2H9N2+·I
Mr188.01
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)8.1380 (2), 8.6259 (2), 16.7854 (6)
V3)1178.29 (6)
Z8
Radiation typeMo Kα
µ (mm1)5.29
Crystal size (mm)0.28 × 0.08 × 0.04
Data collection
DiffractometerOxford Diffraction Gemini S
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.405, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
13735, 1675, 1405
Rint0.025
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.035, 1.08
No. of reflections1675
No. of parameters83
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.58, 0.39

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i1.06 (2)1.75 (2)2.805 (2)173.0 (19)
N1—H2N···I10.882 (19)3.231 (18)3.6502 (14)111.6 (13)
N1—H2N···I1ii0.882 (19)2.820 (19)3.6047 (14)148.9 (15)
N1—H3N···I1iii0.84 (2)2.78 (2)3.5713 (16)157.9 (16)
N2—H4N···I1iv0.84 (2)2.96 (2)3.7346 (16)155.5 (16)
N2—H5N···I1v0.866 (19)3.152 (19)3.9328 (15)151.2 (14)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y, z+3/2; (iv) x+1, y, z+1; (v) x+1, y, z.
 

Acknowledgements

MOO thanks the Commonwealth Scholarship Commission and the British Council for funding and Moi University for sabbatical leave.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, L.-Z. (2009). Acta Cryst. E65, o2625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCraig, G. E., Johnson, C. & Kennedy, A. R. (2012). Acta Cryst. E68, o787.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKennedy, A. R., Lutta, S. T., Morrison, C. A., Okoth, M. O. & Orang'o, D. M. (2011). Acta Cryst. E67, o682–o683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaidi, K., Kamoun, S. & Ayedi, H. F. (2011). J. Chem. Crystallogr. 41, 1258–1261.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-J., Guo, G.-C., Xu, G., Fu, M.-L., Zou, J.-P. & Huang, J.-S. (2006). Inorg. Chem. 45, 10028–10030.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds