inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages i47-i48

K2[FeII3(P2O7)2(H2O)2]

aDepartment of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China
*Correspondence e-mail: yaxihuang@xmu.edu.cn

(Received 3 May 2012; accepted 11 May 2012; online 19 May 2012)

The title compound, dipotassium diaqua­bis­(diphosphato)triferrate(II), K2[FeII3(P2O7)2(H2O)2], was synthesized under solvothermal conditions. The crystal structure is isotypic with its Co analogue. In the structure, there are two crystallographically distinct Fe positions; one lies on an inversion center, the other on a general position. The first Fe2+ cation adopts a regular octa­hedral coordination with six O atoms, whereas the other is coordinated by five O atoms and a water mol­ecule. The [FeO6] octa­hedron shares its trans-edges with an adjacent [FeO5(H2O)] octahedron; in turn, the [FeO5(H2O)] octa­hedron shares skew-edges with a neighbouring [FeO6] octa­hedron and an [FeO5(H2O)] octa­hedron, resulting in a zigzag octa­hedral chain running along [001]. The zigzag chains are linked to each other by the P2O7 diphosphate groups, leading to a corrugated iron diphosphate layer, [Fe3(P2O7)2(H2O)2]2−, parallel to (100). The inter­layer space is occupied by K+ cations, which adopt an eight-coordination to seven O atoms and one water mol­ecule from a neighbouring iron diphosphate layer. Thus, the K+ ions not only compensate the negative charge of the layer but also link the layers into a network structure.

Related literature

For background to iron compounds, see: Mi et al. (2004[Mi, J.-X., Borrmann, H., Zhang, H., Huang, Y.-X., Schnelle, W., Zhao, J.-T. & Kniep, R. (2004). Z. Anorg. Allg. Chem. 630, 1632-1636.]); Huang et al. (2012[Huang, Y.-X., Zhang, X., Huang, X., Schnelle, W., Lin, J., Mi, J.-X., Tang, M.-B. & Zhao, J.-T. (2012). Inorg. Chem. 51, 3316-3323.]). For related structures, see: Chippindale et al. (2003[Chippindale, A. M., Gaslain, F. O. M., Bond, A. D. & Powell, A. V. (2003). J. Mater. Chem. 13, 1950-1955.]) for (NH4)2[Mn3(P2O7)2(H2O)2]; Lightfoot et al. (1990[Lightfoot, P., Cheetham, A. K. & Sleight, A. W. (1990). J. Solid State Chem. 85, 275-282.]) for K2[Co3(P2O7)2(H2O)2]; Liu et al. (2012[Liu, B., Zhang, X., Wen, L., Sun, W. & Huang, Y.-X. (2012). Acta Cryst. E68, i5-i6.]) for (NH4)2[Fe3II(P2O7(H2O)2)2]; Liu et al. (2004[Liu, W., Yang, X.-X., Chen, H.-H., Huang, Y.-X., Schnelle, W. & Zhao, J.-T. (2004). Solid State Sci. 6, 1375-1380.]) for Na(NH4)[Ni3(P2O7)2(H2O)2]; Wei et al. (2010[Wei, Y., Gies, H., Tian, Z., Marler, B., Xu, Y., Wang, L., Ma, H., Pei, R., Li, K. & Wang, B. (2010). Inorg. Chem. Commun. 13, 1357-1360.]) for (NH4)2[Ni3(P2O7)2(H2O)2]. For bond-valence calculations, see: Brown (2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]).

Experimental

Crystal data
  • K2[Fe3(P2O7)2(H2O)2]

  • Mr = 629.66

  • Monoclinic, P 21 /c

  • a = 9.1517 (16) Å

  • b = 8.1737 (15) Å

  • c = 9.3147 (17) Å

  • β = 98.860 (3)°

  • V = 688.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.28 mm−1

  • T = 173 K

  • 0.09 × 0.09 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SMART; Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.687, Tmax = 0.710

  • 4006 measured reflections

  • 1596 independent reflections

  • 1460 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.074

  • S = 1.07

  • 1596 reflections

  • 123 parameters

  • All H-atom parameters refined

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1⋯O3i 0.82 (5) 1.90 (5) 2.716 (4) 171 (5)
O8—H2⋯O7ii 0.76 (4) 1.95 (4) 2.696 (4) 164 (4)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.]) and ATOMS (Dowty, 2004[Dowty, E. (2004). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A class of layered transition metal diphosphates with the general formula of A2M3(P2O7)2(H2O)2 (A = K or NH4, M = transition metal (II)) has recently attracted much attention. Since the first publication of K2Co3(P2O7)2(H2O)2 (Lightfoot et al., 1990) in 1990, a few examples of ammonium substituted compounds, (NH4)2M3(P2O7)2(H2O)2 (M = Mn2+, Ni2+) (Chippindale et al., 2003; Wei et al., 2010), have been synthesized by using either solvothermal or ionothermal method. Their magnetic and ion exchange behaviors have also been discussed. Besides, a compound with mixed cations, Na(NH4)[Ni3(P2O7)2(H2O)2], has also been reported (Liu et al., 2004). Although compounds incorporating with Mn2+, Co2+, and Ni2+ have been known, as a very close relationship to these elements, Fe2+ was not yet found in this class of compounds until very recently an ammonium iron diphosphate, (NH4)2[Fe3II(P2O7)2(H2O)2], was reported by our group which was synthesized by using iron powder as iron source and applying the weak reductive agent pyridine as solvent (Liu et al., 2012). During our systematically investigation on iron compounds (Mi et al., 2004; Huang et al., 2012), we obtained a new member in this class of compounds with the formula of K2[FeII3(P2O7)2(H2O)2].

In the crystal structure of the title compound, there are two crystallographically distinct iron sites, one potassium, and two independent phosphorus (shown in Figure 1). Fe(2) lies on an inversion center (2a, -1) while Fe(1) on a general position (4e, 1). Fe(2) adopts a regular octahedral coordination with six oxygen atoms, whereas Fe(1) coordinates to five oxygen atoms and a water molecule in the form of Fe(1)O5(OH2). Each Fe(2)O6 octahedron shares trans-edges with adjacent Fe(1)O5(OH2) octahedra, and in turn, Fe(1)O5(OH2) octahedron shares skew-edges with the neighboring Fe(2)O6 and Fe(1)O5(OH2) octahedra, which finally leads to the formation of FeO6-based zigzag chains parallel to [010] (see Figure 2a). Two independent phosphorus atoms adopt a four-fold coordination with one long P–O bond and three general P–O bonds which are often found in diphosphates. Every two PO4 tetrahedra share the common O-vertex (O2) to constitute a P2O7 group which acts as a bidentate ligand to link FeO6-based chains along [001], resulting in a undulating iron diphosphate layer, [Fe3(P2O7)2(H2O)2]2–, parallel to the (100) (see Figure 2b). The layers stack along the a-axis direction in AAA fashion with the potassium atoms locating at the interlayer space (see Figure 2c). The potassium ion is 8-coordinated with seven oxygens and a water molecule from the neighbouring layers with one long bond and seven relatively short bonds (see Figure 2d). Bond-valence sum calculations (Brown, 2002) suggests both two iron atoms are in the 2+ valence state (Cald.: 2.008 v.u. for Fe(1) and 2.112 v.u. for Fe(2) and the potassium should be +1 oxidation (Cald.: 1.054 v.u. for K1). Comparing the crystal structure of NH4- and K-compounds, both of them possess the same conformation of iron diphosphate layer, however, the interlayer distance of K-compound is relatively smaller than that of NH4-compound identified by the a-value (9.1517 (16) Å for KFe-compound and 9.4131 (17) Å for NH4Fe-compound) which is consistent with the ion radius of K+ and NH4+.

Related literature top

For background to iron compounds, see: Mi et al. (2004); Huang et al. (2012). For related structures, see: Chippindale et al. (2003) for (NH4)2[Mn3(P2O7)2(H2O)2]; Lightfoot & Cheetham (1990) for K2Co3(P2O7)2(H2O)2; Liu et al. (2012) for (NH4)2[Fe3(H2O)2(P2O7)2]; Liu et al. (2004) for Na(NH4)[Ni3(P2O7)2(H2O)2]; Wei et al. (2010) for (NH4)2[Ni3(P2O7)2(H2O)2]. For bond-valence calculations, see: Brown (2002).

Experimental top

The title compound has been synthesized under solvothermal condition. In a typical synthesis, 1 mmol Fe powder and 2.5 mmol KH2PO4 were added into the mixed solvent of 2 mL pyridine and 2 mL 1,2-propanediol. Then, 2 mL H3PO4 (85%) was dropped into the above solution to adjust pH value to 6-7. After stirred for 5 minutes, the mixture was transferred into a 15 mL Teflon-lined stainless steel autoclave which was heated at 436 K for 7 days and then was cooled down to room temperature. The final product, colourless block-like crystals, was washed with distilled water and filtrated by vacuum. The powder X-ray diffraction of the sample showed that it is isotypic to our recently reported compound [NH4]2[FeII3(H2O)2(P2O7)2].

Refinement top

The hydrogen atoms bonded to water (O8) were located from the difference Fourier maps and refined without applying any constraints on the distance of O–H and the displacement parameter of H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005) and ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structural unit of K2[FeII3(P2O7)2(H2O)2], showing the coordination environments of Fe, K, and P atoms. Thermal ellipsoids were drawn at the 50% probability level. Symmetry codes: (i) x, –y+3/2, z+1/2; (ii) –x+2, –y+1, –z+1; (iii) –x+2,–y+2, –z+1; (iv) –x+2, y+1/2, –z+1/2; (v) x, –y+1/2, z+1/2; (vi) –x+2, y–1/2, –z+1/2; (vii) x, –y+1/2, z–1/2; (viii) –x+1, y+1/2, –z+1/2; (ix) x+1, y–1/2, –z+1/2; (x) –x+1, –y+1, –z+1; (xi) x, y–1, z; (xii) x, –y+3/2, z–1/2; (xiii) x, y+1, z.
[Figure 2] Fig. 2. Polyhedral presentation of the crystal structure of K2[FeII3(P2O7)2(H2O)2], (a) zigzag edge-sharing iron octahedral chain is built from FeO6 and FeO5(H2O) octahedra by sharing their trans- or skew-edges running along [010]; (b) P2O7 groups act as a bidentate ligand to link FeO6-based chains along [001] to form a corrugated iron diphosphate layer [Fe3(P2O7)2(H2O)2]2–; (c) the iron diphosphate layers stack along [100] in AAA fashion with the potassium atoms locating at the interlayer space; (d) the K atom is 8-coordinated to seven oxygen atoms and a H2O molecule coming from adjacent iron diphosphate layers to form an irregular polyhedron. Purple octahedron: FeO6, orange tetrahedron: PO4, light grey sphere: K atom, dark grey sphere: H atom.
Dipotassium diaquabis(diphosphato)triferrate(II) top
Crystal data top
K2[Fe3(P2O7)2(H2O)2]F(000) = 616
Mr = 629.66Dx = 3.037 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4006 reflections
a = 9.1517 (16) Åθ = 2.3–28.3°
b = 8.1737 (15) ŵ = 4.28 mm1
c = 9.3147 (17) ÅT = 173 K
β = 98.860 (3)°Block, colourless
V = 688.5 (2) Å30.09 × 0.09 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1596 independent reflections
Radiation source: fine-focus sealed tube1460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
1265 images,ϕ=0, 90, 180 degree, and Δω=0.3 degree, χ= 54.74 degree scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SMART; Bruker, 2001)
h = 1112
Tmin = 0.687, Tmax = 0.710k = 1010
4006 measured reflectionsl = 128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.074All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0303P)2 + 1.280P]
where P = (Fo2 + 2Fc2)/3
1596 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
K2[Fe3(P2O7)2(H2O)2]V = 688.5 (2) Å3
Mr = 629.66Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.1517 (16) ŵ = 4.28 mm1
b = 8.1737 (15) ÅT = 173 K
c = 9.3147 (17) Å0.09 × 0.09 × 0.08 mm
β = 98.860 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1596 independent reflections
Absorption correction: multi-scan
(SMART; Bruker, 2001)
1460 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.710Rint = 0.027
4006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.074All H-atom parameters refined
S = 1.07Δρmax = 0.57 e Å3
1596 reflectionsΔρmin = 0.66 e Å3
123 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.86324 (5)0.85888 (6)0.50352 (5)0.00807 (13)
Fe21.00000.50000.50000.00754 (16)
P10.89966 (9)0.30110 (10)0.20949 (9)0.00652 (18)
P20.69498 (9)0.56235 (10)0.26759 (9)0.00744 (18)
K10.57440 (8)0.27162 (10)0.48169 (9)0.01682 (19)
O10.6935 (3)0.6515 (3)0.1248 (3)0.0111 (5)
O20.7397 (2)0.3719 (3)0.2360 (2)0.0090 (5)
O30.8654 (2)0.1362 (3)0.1376 (2)0.0084 (5)
O40.9925 (2)0.2944 (3)0.3595 (2)0.0094 (5)
O50.8140 (2)0.6235 (3)0.3887 (3)0.0103 (5)
O61.0389 (2)0.9230 (3)0.3891 (2)0.0089 (5)
O70.5448 (2)0.5477 (3)0.3129 (3)0.0120 (5)
O80.7250 (3)0.9942 (3)0.3420 (3)0.0146 (5)
H10.770 (5)1.027 (6)0.278 (5)0.023 (13)*
H20.645 (5)0.991 (5)0.302 (5)0.013 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0087 (2)0.0085 (2)0.0070 (2)0.00054 (17)0.00131 (17)0.00043 (17)
Fe20.0088 (3)0.0075 (3)0.0061 (3)0.0003 (2)0.0004 (2)0.0000 (2)
P10.0070 (4)0.0068 (4)0.0058 (4)0.0001 (3)0.0008 (3)0.0002 (3)
P20.0072 (4)0.0081 (4)0.0069 (4)0.0007 (3)0.0007 (3)0.0007 (3)
K10.0152 (4)0.0183 (4)0.0164 (4)0.0009 (3)0.0007 (3)0.0013 (3)
O10.0113 (11)0.0142 (12)0.0083 (11)0.0030 (9)0.0029 (9)0.0019 (9)
O20.0072 (11)0.0086 (11)0.0113 (12)0.0005 (8)0.0015 (9)0.0025 (9)
O30.0105 (11)0.0075 (11)0.0071 (11)0.0004 (8)0.0014 (9)0.0016 (9)
O40.0103 (11)0.0096 (11)0.0079 (11)0.0005 (9)0.0002 (9)0.0006 (9)
O50.0096 (11)0.0089 (11)0.0114 (12)0.0017 (9)0.0014 (9)0.0020 (9)
O60.0091 (11)0.0094 (12)0.0082 (11)0.0001 (9)0.0021 (9)0.0014 (9)
O70.0072 (11)0.0134 (12)0.0158 (13)0.0004 (9)0.0028 (9)0.0008 (10)
O80.0097 (13)0.0200 (14)0.0140 (14)0.0006 (10)0.0009 (11)0.0061 (10)
Geometric parameters (Å, º) top
Fe1—O1i2.058 (2)P1—O21.628 (2)
Fe1—O4ii2.103 (2)P2—O71.503 (2)
Fe1—O82.121 (3)P2—O11.515 (2)
Fe1—O62.127 (2)P2—O51.527 (2)
Fe1—O6iii2.169 (2)P2—O21.648 (2)
Fe1—O52.214 (2)K1—O1vii2.685 (2)
Fe2—O5ii2.109 (2)K1—O72.740 (3)
Fe2—O52.109 (2)K1—O7viii2.771 (3)
Fe2—O4ii2.124 (2)K1—O2iv2.859 (2)
Fe2—O42.124 (2)K1—O3iv2.929 (2)
Fe2—O3iv2.210 (2)K1—O23.043 (2)
Fe2—O3v2.210 (2)K1—O8ix3.047 (3)
P1—O31.516 (2)K1—O7vii3.339 (3)
P1—O6vi1.520 (2)O8—H10.82 (5)
P1—O41.521 (2)O8—H20.76 (4)
O1i—Fe1—O4ii95.66 (9)O1vii—K1—O794.87 (7)
O1i—Fe1—O889.59 (10)O1vii—K1—O7viii90.91 (7)
O4ii—Fe1—O8172.30 (10)O7—K1—O7viii86.72 (8)
O1i—Fe1—O6167.91 (9)O1vii—K1—O2iv119.53 (7)
O4ii—Fe1—O689.92 (9)O7—K1—O2iv143.75 (7)
O8—Fe1—O686.00 (10)O7viii—K1—O2iv81.99 (7)
O1i—Fe1—O6iii94.22 (9)O1vii—K1—O3iv170.43 (7)
O4ii—Fe1—O6iii91.94 (9)O7—K1—O3iv94.29 (7)
O8—Fe1—O6iii93.29 (10)O7viii—K1—O3iv86.85 (7)
O6—Fe1—O6iii74.83 (10)O2iv—K1—O3iv50.94 (6)
O1i—Fe1—O596.59 (9)O1vii—K1—O2110.62 (7)
O4ii—Fe1—O580.63 (9)O7—K1—O250.46 (7)
O8—Fe1—O593.20 (10)O7viii—K1—O2132.06 (7)
O6—Fe1—O594.90 (9)O2iv—K1—O2118.20 (8)
O6iii—Fe1—O5167.42 (9)O3iv—K1—O277.53 (6)
O5ii—Fe2—O5180.0O1vii—K1—O8ix91.01 (8)
O5ii—Fe2—O4ii97.39 (9)O7—K1—O8ix112.28 (8)
O5—Fe2—O4ii82.61 (9)O7viii—K1—O8ix160.66 (8)
O5ii—Fe2—O482.61 (9)O2iv—K1—O8ix80.33 (7)
O5—Fe2—O497.39 (9)O3iv—K1—O8ix88.08 (7)
O4ii—Fe2—O4180.0O2—K1—O8ix64.50 (7)
O5ii—Fe2—O3iv87.34 (9)O1vii—K1—O7vii48.08 (6)
O5—Fe2—O3iv92.66 (9)O7—K1—O7vii89.37 (3)
O4ii—Fe2—O3iv90.54 (9)O7viii—K1—O7vii138.28 (9)
O4—Fe2—O3iv89.46 (9)O2iv—K1—O7vii121.35 (7)
O5ii—Fe2—O3v92.66 (9)O3iv—K1—O7vii134.87 (7)
O5—Fe2—O3v87.34 (9)O2—K1—O7vii70.56 (6)
O4ii—Fe2—O3v89.46 (9)O8ix—K1—O7vii49.70 (7)
O4—Fe2—O3v90.54 (9)P2—O1—Fe1x123.83 (14)
O3iv—Fe2—O3v180.0P1—O2—P2128.09 (15)
O3—P1—O6vi112.74 (13)P1—O3—Fe2vi127.45 (13)
O3—P1—O4114.99 (13)P1—O4—Fe1ii142.06 (15)
O6vi—P1—O4111.86 (13)P1—O4—Fe2119.89 (13)
O3—P1—O2104.68 (12)Fe1ii—O4—Fe298.04 (9)
O6vi—P1—O2106.47 (13)P2—O5—Fe2129.55 (14)
O4—P1—O2105.14 (13)P2—O5—Fe1135.27 (14)
O7—P2—O1113.58 (13)Fe2—O5—Fe195.14 (9)
O7—P2—O5113.47 (14)P1v—O6—Fe1121.29 (13)
O1—P2—O5113.57 (14)P1v—O6—Fe1iii130.73 (13)
O7—P2—O2103.75 (13)Fe1—O6—Fe1iii105.17 (10)
O1—P2—O2105.48 (13)H1—O8—H2102 (4)
O5—P2—O2105.80 (13)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x, y+1/2, z+1/2; (v) x+2, y+1/2, z+1/2; (vi) x+2, y1/2, z+1/2; (vii) x+1, y1/2, z+1/2; (viii) x+1, y+1, z+1; (ix) x, y1, z; (x) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1···O3xi0.82 (5)1.90 (5)2.716 (4)171 (5)
O8—H2···O7xii0.76 (4)1.95 (4)2.696 (4)164 (4)
Symmetry codes: (xi) x, y+1, z; (xii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaK2[Fe3(P2O7)2(H2O)2]
Mr629.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.1517 (16), 8.1737 (15), 9.3147 (17)
β (°) 98.860 (3)
V3)688.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)4.28
Crystal size (mm)0.09 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SMART; Bruker, 2001)
Tmin, Tmax0.687, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
4006, 1596, 1460
Rint0.027
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.07
No. of reflections1596
No. of parameters123
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.57, 0.66

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005) and ATOMS (Dowty, 2004), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1···O3i0.82 (5)1.90 (5)2.716 (4)171 (5)
O8—H2···O7ii0.76 (4)1.95 (4)2.696 (4)164 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars of the State Education Ministry, the National Natural Science Foundation of China (grant No. 40972035), the Natural Science Foundation of Fujian Province of China (grant No. 2010J01308) and the Scientific and Technological Innovation Platform of Fujian Province of China (grant No. 2009J1009).

References

First citationBrandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChippindale, A. M., Gaslain, F. O. M., Bond, A. D. & Powell, A. V. (2003). J. Mater. Chem. 13, 1950–1955.  Web of Science CrossRef CAS Google Scholar
First citationDowty, E. (2004). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, Y.-X., Zhang, X., Huang, X., Schnelle, W., Lin, J., Mi, J.-X., Tang, M.-B. & Zhao, J.-T. (2012). Inorg. Chem. 51, 3316–3323.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLightfoot, P., Cheetham, A. K. & Sleight, A. W. (1990). J. Solid State Chem. 85, 275–282.  CrossRef CAS Web of Science Google Scholar
First citationLiu, W., Yang, X.-X., Chen, H.-H., Huang, Y.-X., Schnelle, W. & Zhao, J.-T. (2004). Solid State Sci. 6, 1375–1380.  Web of Science CrossRef CAS Google Scholar
First citationLiu, B., Zhang, X., Wen, L., Sun, W. & Huang, Y.-X. (2012). Acta Cryst. E68, i5–i6.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMi, J.-X., Borrmann, H., Zhang, H., Huang, Y.-X., Schnelle, W., Zhao, J.-T. & Kniep, R. (2004). Z. Anorg. Allg. Chem. 630, 1632–1636.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y., Gies, H., Tian, Z., Marler, B., Xu, Y., Wang, L., Ma, H., Pei, R., Li, K. & Wang, B. (2010). Inorg. Chem. Commun. 13, 1357–1360.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages i47-i48
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds