organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(thio­phene-2-carboxamido)­benzoate

aDepartment of Chemistry, M.M.V., Banaras Hindu University, Varanasi 221 005, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cSchool of Studies in Chemistry, Jiwaji University, Gwalior, India
*Correspondence e-mail: drseemapratap@gmail.com

(Received 20 March 2012; accepted 8 May 2012; online 16 May 2012)

The title compound, C13H11NO3S, was synthesized from methyl anthranilate, triethyl­amine and 2-thio­phenoyl chloride in benzene. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. The dihedral angle between the rings is 2.74 (12)°. In the crystal, C—H⋯O inter­actions link neighbouring mol­ecules into a three-dimensional network.

Related literature

For the synthesis, see: Sladowska et al. (1980[Sladowska, H., Sieklucka-Dziuba, M., Rajtar, G., Sodowski, M., Kleinrok, Z., Kirino, O., Yamamoto, S. & Kato, T. (1980). Agric. Biol. Chem. 44, 2143-2147.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO3S

  • Mr = 261.29

  • Orthorhombic, P c a 21

  • a = 19.2845 (4) Å

  • b = 3.86753 (8) Å

  • c = 15.6430 (3) Å

  • V = 1166.71 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.48 mm−1

  • T = 123 K

  • 0.45 × 0.18 × 0.04 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.573, Tmax = 0.908

  • 2379 measured reflections

  • 1422 independent reflections

  • 1381 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.04

  • 1422 reflections

  • 168 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 206 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.85 (2) 1.99 (3) 2.665 (3) 135 (4)
C9—H9A⋯O2i 0.95 2.43 3.380 (3) 174
C13—H13A⋯O1ii 0.98 2.52 3.433 (4) 154
Symmetry codes: (i) [-x+1, -y+2, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+2, z].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our studies of substituent effects on the structures of amides, we report here the crystal structure of the amide, methyl 2-(thiophene-2-carboxamido)benzoate. The structure of the title compound is shown in Fig. 1. The conformation of the molecule with respect to the carbonyl and anthranilate part is nearly planar as reflected by torsion angles C4—C5—N1—C6, C6—N1—C5—O1 and C3—C4—C5—O1 of 179.6 (2), -0.8 (5) and 178.3 (3) Å respectively. The 2-thiophenoyl and anthranilate groups are trans to each other across the C5—N1 bond. Bonds C5—O1 and C12—O2 show typical double bond character with bond lengths of 1.226 (3) and 1.211 (4) respectively, while N1—C5, N1—C6 and C12—O3 show partial double bond character with bond lengths of 1.365 (4), 1.401 (4), and 1.329 (3) Å respectively. All bond length and bond angles confirm the sp2 hybridization for all C and N atoms except C13, indicating that the whole molecule is planar.

Related literature top

For the synthesis, see: Sladowska et al. (1980).

Experimental top

The title compound was synthesized using the literature procedure (Sladowska et al., 1980). To a solution of methyl anthranilate (10 mmol) and triethyl amine(10mmol) in benzene(30 ml) was added 2-thiophenoyl chloride (10 mmol) in benzene(10 ml) with stirring at room temperature. After stirring for three hour, the reaction mixture was washed successively with water, dilute HCl and aqueous Na2CO3 and the organic layer was dried over dry Na2SO4. After removal of the solvent, the residue was recrystallized from ethanol. Colorless, needles type crystal suitable for X-ray diffraction were obtained after few days. Yield 78%.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95–0.98 Å with isotropic displacement parameters fixed to Uiso(H) = 1.2 Ueq(C). The H attached to N was isotropically refined but with the N—H distance restrained to 0.88 Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound(I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing intramolecular and intermolecular interactions as dashed lines.
Methyl 2-(thiophene-2-carboxamido)benzoate top
Crystal data top
C13H11NO3SF(000) = 544
Mr = 261.29Dx = 1.488 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2acCell parameters from 1440 reflections
a = 19.2845 (4) Åθ = 2.8–75.1°
b = 3.86753 (8) ŵ = 2.48 mm1
c = 15.6430 (3) ÅT = 123 K
V = 1166.71 (4) Å3Needle, colorless
Z = 40.45 × 0.18 × 0.04 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
1422 independent reflections
Radiation source: Enhance (Cu) X-ray Source1381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.5081 pixels mm-1θmax = 75.2°, θmin = 4.6°
ω scansh = 1523
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012)
k = 44
Tmin = 0.573, Tmax = 0.908l = 619
2379 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.0898P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1422 reflectionsΔρmax = 0.21 e Å3
168 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 206 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
C13H11NO3SV = 1166.71 (4) Å3
Mr = 261.29Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 19.2845 (4) ŵ = 2.48 mm1
b = 3.86753 (8) ÅT = 123 K
c = 15.6430 (3) Å0.45 × 0.18 × 0.04 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
1422 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012)
1381 reflections with I > 2σ(I)
Tmin = 0.573, Tmax = 0.908Rint = 0.033
2379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.27 e Å3
1422 reflectionsAbsolute structure: Flack (1983), 206 Friedel pairs
168 parametersAbsolute structure parameter: 0.02 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25886 (3)0.20133 (16)0.72770 (5)0.03006 (19)
O10.28253 (10)0.3657 (6)0.54680 (14)0.0304 (4)
O20.51080 (11)0.8922 (6)0.60945 (13)0.0339 (5)
O30.57519 (10)1.1406 (5)0.50816 (14)0.0308 (4)
N10.38872 (12)0.6290 (6)0.56315 (15)0.0252 (5)
H1B0.4151 (18)0.698 (9)0.603 (2)0.037 (10)*
C10.29286 (16)0.2186 (7)0.8287 (2)0.0307 (6)
H1A0.26940.13720.87810.037*
C20.35685 (16)0.3611 (8)0.8301 (2)0.0304 (6)
H2A0.38310.39190.88100.037*
C30.38110 (14)0.4607 (7)0.74725 (17)0.0249 (5)
H3A0.42510.56210.73640.030*
C40.33202 (13)0.3900 (7)0.68499 (18)0.0251 (5)
C50.33132 (14)0.4577 (7)0.59160 (18)0.0247 (6)
C60.40520 (13)0.7321 (7)0.4797 (2)0.0231 (5)
C70.36094 (14)0.6720 (7)0.41074 (19)0.0262 (6)
H7A0.31730.56420.42010.031*
C80.38002 (15)0.7678 (7)0.3290 (2)0.0279 (6)
H8A0.34980.71850.28260.034*
C90.44255 (15)0.9352 (7)0.31331 (18)0.0277 (6)
H9A0.45501.00100.25690.033*
C100.48604 (14)1.0039 (7)0.38091 (19)0.0261 (6)
H10A0.52841.12210.37080.031*
C110.46910 (13)0.9032 (7)0.46454 (18)0.0241 (6)
C120.51909 (14)0.9743 (7)0.53544 (18)0.0253 (5)
C130.62744 (16)1.2115 (9)0.5729 (2)0.0359 (7)
H13A0.66451.35250.54790.054*
H13B0.64690.99290.59370.054*
H13C0.60621.33670.62060.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0264 (3)0.0293 (3)0.0345 (4)0.0023 (2)0.0046 (3)0.0010 (4)
O10.0248 (9)0.0361 (10)0.0303 (10)0.0051 (8)0.0037 (8)0.0012 (9)
O20.0329 (10)0.0454 (11)0.0235 (10)0.0104 (9)0.0042 (9)0.0033 (10)
O30.0254 (9)0.0401 (11)0.0268 (9)0.0077 (9)0.0033 (9)0.0017 (9)
N10.0234 (10)0.0295 (11)0.0227 (11)0.0024 (9)0.0005 (9)0.0013 (9)
C10.0342 (14)0.0284 (14)0.0294 (15)0.0026 (11)0.0072 (12)0.0021 (12)
C20.0341 (14)0.0299 (13)0.0272 (14)0.0021 (12)0.0037 (12)0.0013 (12)
C30.0281 (12)0.0242 (11)0.0224 (12)0.0015 (10)0.0044 (11)0.0004 (10)
C40.0230 (12)0.0226 (12)0.0298 (14)0.0020 (10)0.0037 (11)0.0009 (10)
C50.0245 (12)0.0208 (12)0.0288 (14)0.0035 (10)0.0019 (11)0.0001 (10)
C60.0239 (13)0.0211 (11)0.0243 (12)0.0017 (9)0.0006 (11)0.0002 (11)
C70.0232 (12)0.0263 (13)0.0290 (15)0.0009 (10)0.0042 (12)0.0018 (11)
C80.0301 (13)0.0282 (12)0.0255 (14)0.0035 (11)0.0094 (12)0.0020 (11)
C90.0333 (13)0.0287 (14)0.0210 (12)0.0050 (11)0.0007 (11)0.0033 (11)
C100.0256 (12)0.0251 (13)0.0277 (14)0.0007 (11)0.0018 (11)0.0005 (10)
C110.0239 (12)0.0218 (11)0.0267 (14)0.0028 (10)0.0032 (11)0.0021 (11)
C120.0240 (12)0.0260 (12)0.0258 (13)0.0006 (10)0.0017 (10)0.0011 (10)
C130.0292 (14)0.0416 (17)0.0370 (16)0.0082 (12)0.0090 (14)0.0002 (15)
Geometric parameters (Å, º) top
S1—C11.711 (3)C4—C51.484 (4)
S1—C41.723 (3)C6—C71.395 (4)
O1—C51.226 (3)C6—C111.419 (3)
O2—C121.211 (4)C7—C81.381 (4)
O3—C121.329 (3)C7—H7A0.9500
O3—C131.454 (4)C8—C91.390 (4)
N1—C51.365 (4)C8—H8A0.9500
N1—C61.401 (4)C9—C101.375 (4)
N1—H1B0.852 (19)C9—H9A0.9500
C1—C21.352 (4)C10—C111.404 (4)
C1—H1A0.9500C10—H10A0.9500
C2—C31.431 (4)C11—C121.495 (4)
C2—H2A0.9500C13—H13A0.9800
C3—C41.385 (4)C13—H13B0.9800
C3—H3A0.9500C13—H13C0.9800
C1—S1—C491.59 (15)C8—C7—H7A119.7
C12—O3—C13115.6 (3)C6—C7—H7A119.7
C5—N1—C6128.7 (2)C7—C8—C9121.3 (3)
C5—N1—H1B113 (3)C7—C8—H8A119.4
C6—N1—H1B117 (3)C9—C8—H8A119.4
C2—C1—S1112.4 (2)C10—C9—C8118.9 (3)
C2—C1—H1A123.8C10—C9—H9A120.6
S1—C1—H1A123.8C8—C9—H9A120.6
C1—C2—C3113.2 (3)C9—C10—C11121.4 (2)
C1—C2—H2A123.4C9—C10—H10A119.3
C3—C2—H2A123.4C11—C10—H10A119.3
C4—C3—C2111.1 (2)C10—C11—C6119.2 (2)
C4—C3—H3A124.4C10—C11—C12119.4 (2)
C2—C3—H3A124.4C6—C11—C12121.4 (3)
C3—C4—C5131.5 (2)O2—C12—O3122.8 (3)
C3—C4—S1111.7 (2)O2—C12—C11125.2 (3)
C5—C4—S1116.7 (2)O3—C12—C11112.1 (2)
O1—C5—N1125.2 (3)O3—C13—H13A109.5
O1—C5—C4121.2 (3)O3—C13—H13B109.5
N1—C5—C4113.5 (2)H13A—C13—H13B109.5
C7—C6—N1122.3 (2)O3—C13—H13C109.5
C7—C6—C11118.6 (3)H13A—C13—H13C109.5
N1—C6—C11119.1 (3)H13B—C13—H13C109.5
C8—C7—C6120.6 (3)
C4—S1—C1—C20.0 (2)C11—C6—C7—C82.0 (4)
S1—C1—C2—C30.5 (3)C6—C7—C8—C91.9 (4)
C1—C2—C3—C40.8 (4)C7—C8—C9—C100.3 (4)
C2—C3—C4—C5177.1 (3)C8—C9—C10—C111.2 (4)
C2—C3—C4—S10.8 (3)C9—C10—C11—C61.1 (4)
C1—S1—C4—C30.4 (2)C9—C10—C11—C12178.1 (2)
C1—S1—C4—C5177.8 (2)C7—C6—C11—C100.5 (4)
C6—N1—C5—O10.8 (5)N1—C6—C11—C10179.4 (3)
C6—N1—C5—C4179.6 (2)C7—C6—C11—C12179.7 (2)
C3—C4—C5—O1178.3 (3)N1—C6—C11—C120.2 (4)
S1—C4—C5—O13.9 (4)C13—O3—C12—O21.5 (4)
C3—C4—C5—N12.1 (4)C13—O3—C12—C11178.4 (2)
S1—C4—C5—N1175.66 (19)C10—C11—C12—O2178.1 (3)
C5—N1—C6—C71.1 (4)C6—C11—C12—O21.0 (4)
C5—N1—C6—C11178.8 (3)C10—C11—C12—O31.7 (4)
N1—C6—C7—C8177.9 (3)C6—C11—C12—O3179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.85 (2)1.99 (3)2.665 (3)135 (4)
C9—H9A···O2i0.952.433.380 (3)174
C13—H13A···O1ii0.982.523.433 (4)154
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x+1/2, y+2, z.

Experimental details

Crystal data
Chemical formulaC13H11NO3S
Mr261.29
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)123
a, b, c (Å)19.2845 (4), 3.86753 (8), 15.6430 (3)
V3)1166.71 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.48
Crystal size (mm)0.45 × 0.18 × 0.04
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.573, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
2379, 1422, 1381
Rint0.033
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.04
No. of reflections1422
No. of parameters168
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.27
Absolute structureFlack (1983), 206 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.852 (19)1.99 (3)2.665 (3)135 (4)
C9—H9A···O2i0.952.433.380 (3)174.2
C13—H13A···O1ii0.982.523.433 (4)154.3
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x+1/2, y+2, z.
 

Acknowledgements

DPS and SP are grateful to Banaras Hindu University, Varanasi, for financial support. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to acknowledge the USIEF for the award of a Fulbright–Nehru Senior Research Fellowship.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSladowska, H., Sieklucka-Dziuba, M., Rajtar, G., Sodowski, M., Kleinrok, Z., Kirino, O., Yamamoto, S. & Kato, T. (1980). Agric. Biol. Chem. 44, 2143–2147.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds