metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(dicyanamido-κN)tetra­kis­(pyridine-κN)nickel(II)

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, and bDepartement of Chemistry, Texas A&M University, College Station, Texas 77843, USA
*Correspondence e-mail: swoehlert@ac.uni-kiel.de

(Received 20 April 2012; accepted 2 May 2012; online 12 May 2012)

In the crystal structure of the title compound, [Ni(C2N3)2(C5H5N)4], the NiII cations are coordinated by four pyridine ligands and two dicyanamide anions into discrete complexes. The shortest Ni⋯Ni separation is 8.1068 (10) Å. The structure is pseudo-centrosymmetric and can also be refined in the space group C2/c in which both anionic ligands are strongly disordered and the refinement leads to significantly poorer reliability factors.

Related literature

For related structures, see: Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019-11026.], 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]); Wriedt & Näther (2011[Wriedt, M. & Näther, C. (2011). Dalton Trans. 40, 886-898.]); Wu et al. (2004[Wu, A.-Q., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2004). Acta Cryst. E60, m373-m375.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2N3)2(C5H5N)4]

  • Mr = 507.21

  • Monoclinic, C c

  • a = 13.0439 (6) Å

  • b = 12.8557 (8) Å

  • c = 15.1294 (7) Å

  • β = 110.191 (5)°

  • V = 2381.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 170 K

  • 0.05 × 0.04 × 0.04 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.911, Tmax = 0.973

  • 11154 measured reflections

  • 5386 independent reflections

  • 4554 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 0.98

  • 5386 reflections

  • 318 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Imapct GbR, Bonn, Germany.]); software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

Recently we have reported on the thermal and magnetic properties of coordination polymers based on paramagnetic transition metal thio- and selenocyanato compounds in which the cations are linked by thio- or selenocyanato anions (Boeckmann & Näther; 2010; Boeckmann & Näther, 2011). The bridging compounds with e.g. pyridine can be prepared by thermal decomposition of discrete complexes with terminal bonded anionic ligands. In the course of systematic investigations we also started to investigated similar compounds based on dicyanamide (Wriedt & Näther, 2011). Within this project crystals of the title compound were obtained, which were characterized by single-crystal X-ray diffraction. In the crystal structure of the title compound each nickel(II) cation is six-coordinated by two dicyanamido anions and four pyridine ligands in a slightly distorted octehedral geometry (Fig. 1). The NiN6 distances ranges from 2.057 (3) Å to 2.169 (3) Å and the angles are between 86.59 (11) ° and 178.96 (15)°. In the crystal structure, the discrete complexes are connected through intermolecular N—HC hydrogen bonds with an N···H distances of 2.559 Å (Fig. 2). The shortest nickel(II)—nickel(II) distance between the complexes is 9.157 Å.

It must be noted that a discrete nickel(II) dicyanamide complex is reported (Wu et al., 2004) with 1,10-phenanthroline as co-ligands in which all ligands are cis-coordinated.

Related literature top

For related structures see: Boeckmann & Näther (2010, 2011); Wriedt & Näther (2011); Wu et al. (2004). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Nickel(II) chloride hexahydrate (NiCl2x6H2O), sodium dicyanamide (NaN(CN)2) and pyridine were obtained from Alfa Aesar. All chemicals were used without further purification. 0.125 mmol (29.7 mg) NiCl2x6H2O, 0.25 mmol (22.3 mg) Na(N(CN)2) were reacted in 2.5 ml pyridine. Light-green single-crystal of the title compound were obtained after three days.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with Ueq(H) = 1.2 Ueq(C) of the parent atom using a riding model with C—H = 0.95 Å. The structure is pseudo-centrosymmetric and can also be refined in the centrosymmetric space group C2/c. However, in C2/c the complexes are located on centres of inversion and the anionic ligands are strongly disorderd which is not the case in space group Cc. Moreover, in C2/c the reliability factors are very poor and no reasonable structure model can be found. Therefore, Cc was selected, in which the structure can be very easily refined. In this case the absolute structure cannot be determined presumable, because of the pseudo-symmetry and therefore, a twin refinement for racemic twinning was performed leading to an BASF parameter of 0.53 (2).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with a view of the discrete complexes (green = nickel(II), blue = nitrogen, grey = carbon and white = hydrogen).
Bis(dicyanamido-κN)tetrakis(pyridine-κN)nickel(II) top
Crystal data top
[Ni(C2N3)2(C5H5N)4]F(000) = 1048
Mr = 507.21Dx = 1.415 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 11154 reflections
a = 13.0439 (6) Åθ = 3.0–28.1°
b = 12.8557 (8) ŵ = 0.85 mm1
c = 15.1294 (7) ÅT = 170 K
β = 110.191 (5)°Block, light green
V = 2381.1 (2) Å30.05 × 0.04 × 0.04 mm
Z = 4
Data collection top
Stoe IPDS-1
diffractometer
5386 independent reflections
Radiation source: fine-focus sealed tube4554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi scanθmax = 28.1°, θmin = 3.0°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1717
Tmin = 0.911, Tmax = 0.973k = 1616
11154 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0593P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
5386 reflectionsΔρmax = 0.35 e Å3
318 parametersΔρmin = 0.44 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0106 (6)
Crystal data top
[Ni(C2N3)2(C5H5N)4]V = 2381.1 (2) Å3
Mr = 507.21Z = 4
Monoclinic, CcMo Kα radiation
a = 13.0439 (6) ŵ = 0.85 mm1
b = 12.8557 (8) ÅT = 170 K
c = 15.1294 (7) Å0.05 × 0.04 × 0.04 mm
β = 110.191 (5)°
Data collection top
Stoe IPDS-1
diffractometer
5386 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
4554 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.973Rint = 0.035
11154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.98Δρmax = 0.35 e Å3
5386 reflectionsΔρmin = 0.44 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.53427 (5)0.75512 (3)0.65840 (5)0.01803 (10)
N10.5772 (2)0.68096 (18)0.7947 (2)0.0204 (6)
C10.5414 (3)0.7163 (3)0.8622 (3)0.0254 (7)
H10.49970.77860.85080.031*
C20.5620 (3)0.6669 (3)0.9474 (3)0.0314 (8)
H20.53600.69560.99350.038*
C30.6207 (3)0.5749 (3)0.9651 (3)0.0332 (8)
H30.63450.53851.02270.040*
C40.6587 (3)0.5376 (3)0.8962 (3)0.0338 (8)
H40.69920.47470.90570.041*
C50.6369 (3)0.5932 (2)0.8131 (3)0.0280 (7)
H50.66550.56820.76720.034*
N110.6453 (2)0.88091 (19)0.7206 (2)0.0230 (6)
C110.7525 (3)0.8647 (3)0.7619 (3)0.0364 (9)
H110.77920.79540.76640.044*
C120.8266 (4)0.9446 (3)0.7983 (4)0.0512 (12)
H120.90240.92990.82620.061*
C130.7897 (4)1.0450 (3)0.7938 (4)0.0480 (11)
H130.83911.10080.81880.058*
C140.6809 (4)1.0628 (3)0.7529 (3)0.0416 (10)
H140.65271.13150.74840.050*
C150.6115 (3)0.9793 (2)0.7179 (3)0.0331 (8)
H150.53550.99290.69030.040*
N210.4158 (2)0.63412 (19)0.5948 (2)0.0223 (6)
C210.4425 (3)0.5333 (2)0.6051 (3)0.0285 (8)
H210.51660.51530.63780.034*
C220.3677 (4)0.4536 (3)0.5706 (3)0.0403 (10)
H220.39020.38290.57990.048*
C230.2604 (4)0.4788 (3)0.5226 (3)0.0419 (10)
H230.20710.42590.49880.050*
C240.2317 (3)0.5822 (3)0.5098 (3)0.0406 (9)
H240.15850.60200.47560.049*
C250.3110 (3)0.6567 (3)0.5475 (3)0.0297 (8)
H250.29010.72790.53930.036*
N310.4925 (2)0.81948 (19)0.5191 (2)0.0228 (6)
C310.5106 (3)0.7632 (3)0.4508 (3)0.0269 (7)
H310.53960.69500.46570.032*
C320.4890 (3)0.7998 (3)0.3597 (3)0.0359 (8)
H320.50320.75750.31380.043*
C330.4467 (3)0.8983 (3)0.3369 (3)0.0368 (9)
H330.43070.92490.27500.044*
C340.4282 (4)0.9574 (3)0.4057 (3)0.0384 (9)
H340.40001.02600.39240.046*
C350.4513 (3)0.9153 (3)0.4948 (3)0.0326 (8)
H350.43710.95650.54140.039*
N410.6587 (2)0.67389 (19)0.6335 (2)0.0241 (6)
C410.7342 (3)0.6558 (2)0.6128 (2)0.0234 (7)
N420.8215 (3)0.6277 (3)0.5954 (3)0.0398 (8)
C420.8367 (3)0.6685 (3)0.5206 (3)0.0445 (10)
N430.8561 (4)0.6974 (3)0.4559 (3)0.0723 (14)
N510.4106 (2)0.8376 (2)0.6812 (2)0.0248 (6)
C510.3343 (3)0.8681 (2)0.6955 (2)0.0198 (6)
N520.2530 (3)0.9113 (2)0.7117 (2)0.0304 (6)
C520.1669 (3)0.8567 (2)0.7082 (2)0.0266 (6)
N530.0854 (3)0.8178 (3)0.7044 (3)0.0512 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01894 (14)0.01636 (15)0.02019 (15)0.00311 (14)0.00853 (10)0.00008 (15)
N10.0215 (15)0.0189 (11)0.0215 (17)0.0028 (9)0.0083 (13)0.0001 (10)
C10.0266 (16)0.0255 (15)0.0252 (19)0.0042 (13)0.0103 (15)0.0020 (14)
C20.0326 (18)0.0417 (18)0.0224 (18)0.0036 (14)0.0127 (15)0.0012 (14)
C30.037 (2)0.0382 (18)0.024 (2)0.0060 (14)0.0090 (17)0.0072 (14)
C40.043 (2)0.0283 (15)0.030 (2)0.0167 (14)0.0136 (17)0.0102 (13)
C50.0342 (18)0.0260 (14)0.0257 (18)0.0106 (12)0.0127 (15)0.0035 (12)
N110.0242 (15)0.0221 (12)0.0234 (16)0.0002 (10)0.0093 (13)0.0014 (10)
C110.033 (2)0.0281 (16)0.044 (3)0.0006 (13)0.0074 (19)0.0027 (14)
C120.033 (2)0.044 (2)0.061 (3)0.0111 (17)0.003 (2)0.008 (2)
C130.051 (3)0.0321 (18)0.060 (3)0.0195 (17)0.019 (2)0.0114 (18)
C140.048 (2)0.0229 (15)0.055 (3)0.0078 (15)0.018 (2)0.0056 (15)
C150.035 (2)0.0189 (14)0.047 (2)0.0006 (13)0.0160 (18)0.0047 (14)
N210.0225 (15)0.0185 (11)0.0259 (16)0.0004 (9)0.0084 (13)0.0028 (10)
C210.0280 (17)0.0188 (13)0.038 (2)0.0029 (12)0.0106 (16)0.0011 (12)
C220.048 (2)0.0187 (15)0.052 (3)0.0014 (14)0.014 (2)0.0050 (14)
C230.035 (2)0.0349 (18)0.050 (3)0.0111 (15)0.0068 (19)0.0073 (16)
C240.0274 (19)0.0347 (18)0.050 (3)0.0043 (14)0.0009 (18)0.0037 (16)
C250.0222 (16)0.0257 (14)0.034 (2)0.0013 (12)0.0006 (15)0.0023 (13)
N310.0239 (15)0.0220 (12)0.0221 (17)0.0011 (10)0.0075 (13)0.0024 (10)
C310.0275 (16)0.0328 (17)0.0208 (18)0.0002 (13)0.0089 (14)0.0039 (13)
C320.0334 (19)0.053 (2)0.023 (2)0.0027 (16)0.0118 (16)0.0039 (15)
C330.033 (2)0.051 (2)0.026 (2)0.0024 (15)0.0106 (17)0.0107 (15)
C340.043 (2)0.0395 (19)0.030 (2)0.0065 (15)0.0077 (18)0.0153 (15)
C350.040 (2)0.0297 (15)0.029 (2)0.0076 (13)0.0123 (17)0.0056 (12)
N410.0250 (15)0.0243 (12)0.0258 (17)0.0077 (10)0.0122 (14)0.0019 (10)
C410.0243 (16)0.0230 (14)0.0232 (18)0.0021 (11)0.0085 (14)0.0037 (11)
N420.0305 (17)0.0533 (19)0.045 (2)0.0087 (14)0.0245 (15)0.0011 (14)
C420.048 (2)0.0416 (18)0.060 (3)0.0219 (16)0.039 (2)0.0256 (17)
N430.103 (3)0.067 (3)0.082 (3)0.046 (2)0.076 (3)0.033 (2)
N510.0223 (15)0.0225 (12)0.0307 (18)0.0055 (10)0.0106 (14)0.0014 (10)
C510.0244 (15)0.0164 (12)0.0168 (15)0.0023 (10)0.0048 (12)0.0002 (10)
N520.0295 (14)0.0243 (13)0.0441 (18)0.0036 (11)0.0213 (13)0.0051 (11)
C520.0266 (15)0.0241 (13)0.0324 (18)0.0097 (11)0.0144 (13)0.0082 (11)
N530.0377 (17)0.0438 (17)0.079 (3)0.0064 (14)0.0294 (18)0.0222 (17)
Geometric parameters (Å, º) top
Ni1—N512.057 (3)N21—C251.338 (5)
Ni1—N412.071 (3)C21—C221.386 (5)
Ni1—N312.152 (3)C21—H210.9500
Ni1—N112.158 (3)C22—C231.375 (6)
Ni1—N12.162 (3)C22—H220.9500
Ni1—N212.169 (3)C23—C241.377 (6)
N1—C11.341 (4)C23—H230.9500
N1—C51.344 (4)C24—C251.381 (5)
C1—C21.377 (5)C24—H240.9500
C1—H10.9500C25—H250.9500
C2—C31.383 (5)N31—C351.343 (4)
C2—H20.9500N31—C311.348 (5)
C3—C41.385 (5)C31—C321.391 (5)
C3—H30.9500C31—H310.9500
C4—C51.388 (5)C32—C331.376 (6)
C4—H40.9500C32—H320.9500
C5—H50.9500C33—C341.376 (6)
N11—C151.336 (4)C33—H330.9500
N11—C111.337 (5)C34—C351.385 (5)
C11—C121.388 (6)C34—H340.9500
C11—H110.9500C35—H350.9500
C12—C131.371 (6)N41—C411.154 (4)
C12—H120.9500C41—N421.306 (4)
C13—C141.358 (7)N42—C421.322 (5)
C13—H130.9500C42—N431.154 (5)
C14—C151.386 (5)N51—C511.157 (4)
C14—H140.9500C51—N521.294 (4)
C15—H150.9500N52—C521.309 (4)
N21—C211.337 (4)C52—N531.159 (4)
N51—Ni1—N41178.96 (15)N11—C15—C14123.8 (4)
N51—Ni1—N3191.03 (12)N11—C15—H15118.1
N41—Ni1—N3188.00 (11)C14—C15—H15118.1
N51—Ni1—N1189.29 (11)C21—N21—C25116.7 (3)
N41—Ni1—N1190.40 (11)C21—N21—Ni1121.8 (3)
N31—Ni1—N1192.51 (11)C25—N21—Ni1121.4 (2)
N51—Ni1—N191.56 (11)N21—C21—C22123.5 (4)
N41—Ni1—N189.43 (11)N21—C21—H21118.3
N31—Ni1—N1176.39 (11)C22—C21—H21118.3
N11—Ni1—N190.04 (11)C23—C22—C21118.7 (3)
N51—Ni1—N2187.97 (11)C23—C22—H22120.6
N41—Ni1—N2192.33 (11)C21—C22—H22120.6
N31—Ni1—N2186.59 (11)C22—C23—C24118.6 (4)
N11—Ni1—N21177.09 (12)C22—C23—H23120.7
N1—Ni1—N2190.98 (11)C24—C23—H23120.7
C1—N1—C5117.1 (3)C23—C24—C25118.9 (4)
C1—N1—Ni1122.3 (2)C23—C24—H24120.5
C5—N1—Ni1120.5 (2)C25—C24—H24120.5
N1—C1—C2123.3 (3)N21—C25—C24123.5 (3)
N1—C1—H1118.3N21—C25—H25118.2
C2—C1—H1118.3C24—C25—H25118.2
C1—C2—C3119.5 (3)C35—N31—C31116.2 (3)
C1—C2—H2120.3C35—N31—Ni1124.3 (2)
C3—C2—H2120.3C31—N31—Ni1119.5 (2)
C2—C3—C4117.9 (3)N31—C31—C32123.3 (4)
C2—C3—H3121.1N31—C31—H31118.3
C4—C3—H3121.1C32—C31—H31118.3
C3—C4—C5119.3 (3)C33—C32—C31119.1 (4)
C3—C4—H4120.3C33—C32—H32120.5
C5—C4—H4120.3C31—C32—H32120.5
N1—C5—C4122.8 (3)C32—C33—C34118.6 (4)
N1—C5—H5118.6C32—C33—H33120.7
C4—C5—H5118.6C34—C33—H33120.7
C15—N11—C11116.3 (3)C33—C34—C35118.9 (4)
C15—N11—Ni1122.1 (3)C33—C34—H34120.5
C11—N11—Ni1121.6 (2)C35—C34—H34120.5
N11—C11—C12122.9 (4)N31—C35—C34123.9 (4)
N11—C11—H11118.5N31—C35—H35118.1
C12—C11—H11118.5C34—C35—H35118.1
C13—C12—C11119.5 (5)C41—N41—Ni1161.0 (3)
C13—C12—H12120.2N41—C41—N42174.3 (4)
C11—C12—H12120.2C41—N42—C42117.5 (4)
C14—C13—C12118.4 (4)N43—C42—N42174.2 (5)
C14—C13—H13120.8C51—N51—Ni1168.7 (3)
C12—C13—H13120.8N51—C51—N52174.3 (3)
C13—C14—C15119.1 (4)C51—N52—C52120.7 (3)
C13—C14—H14120.5N53—C52—N52173.2 (3)
C15—C14—H14120.5

Experimental details

Crystal data
Chemical formula[Ni(C2N3)2(C5H5N)4]
Mr507.21
Crystal system, space groupMonoclinic, Cc
Temperature (K)170
a, b, c (Å)13.0439 (6), 12.8557 (8), 15.1294 (7)
β (°) 110.191 (5)
V3)2381.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.05 × 0.04 × 0.04
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.911, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
11154, 5386, 4554
Rint0.035
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 0.98
No. of reflections5386
No. of parameters318
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.44

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011), XCIF in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019–11026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Imapct GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M. & Näther, C. (2011). Dalton Trans. 40, 886–898.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWu, A.-Q., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2004). Acta Cryst. E60, m373–m375.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds