metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(tetra­aqua­cadmium)-μ-4,4′-bi­pyridine-κ2N:N′] 4-hy­dr­oxy-3-sulfonato­benzoate monohydrate]

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 23 April 2012; accepted 26 April 2012; online 2 May 2012)

The two independent CdII atoms in the polymeric title compound, [Cd(C10H8N2)(H2O)4](C7H4O6S)·H2O, lie on twofold rotation axes, and each is coordinated by four water mol­ecules and the N atoms of two 4,4′-bipyridine mol­ecules in an octa­hedral geometry. Bridging gives rise to chains along [101] and [-101]. The 4-hy­droxy-3-sulfonato­benzoate dianions are not connected to the CdII atoms, but form hydrogen bonds to the coordinated water mol­ecules as well as the lattice water mol­ecule, generating a three-dimensional network.

Related literature

For the 1,10-phenanthroline-chelated MnII derivative of 4-hy­droxy-3-sulfonato­benzoic acid, see: Fang et al. (2011[Fang, X.-Q., Chen, P.-G., Zhu, Z.-B., Deng, Z.-P. & Gao, S. (2011). Chin. J. Inorg. Chem. 27, 1733-1737.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C10H8N2)(H2O)4](C7H4O6S)·H2O

  • Mr = 574.83

  • Orthorhombic, P b c n

  • a = 16.3246 (10) Å

  • b = 15.3063 (11) Å

  • c = 16.5084 (10) Å

  • V = 4124.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.810, Tmax = 0.867

  • 61947 measured reflections

  • 4705 independent reflections

  • 3503 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.04

  • 4705 reflections

  • 334 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O5i 0.84 (1) 1.93 (1) 2.762 (4) 171 (5)
O1w—H12⋯O1 0.84 (1) 1.99 (2) 2.805 (3) 163 (5)
O2w—H21⋯O6ii 0.84 (1) 2.36 (2) 3.136 (3) 154 (4)
O2w—H22⋯O5wii 0.84 (1) 1.85 (1) 2.685 (4) 173 (5)
O3w—H31⋯O2iii 0.84 (1) 2.08 (2) 2.858 (3) 155 (3)
O3w—H32⋯O6iv 0.84 (1) 1.99 (1) 2.812 (3) 167 (4)
O4w—H41⋯O1v 0.84 (1) 1.84 (1) 2.675 (3) 178 (4)
O4w—H42⋯O4vi 0.84 (1) 2.10 (2) 2.869 (3) 154 (4)
O5w—H51⋯O2 0.84 (1) 1.96 (2) 2.779 (3) 166 (5)
O5w—H52⋯O6vii 0.84 (1) 2.06 (2) 2.850 (4) 157 (6)
O3—H3⋯O2viii 0.84 (1) 1.91 (1) 2.746 (3) 176 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+1]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (vi) [-x+1, y, -z+{\script{3\over 2}}]; (vii) [-x+1, y, -z+{\script{1\over 2}}]; (viii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The doubly-deprotonated 4-hydroxy-3-sulfonatobenzoic acid ion functions in a chelating mode to connect MnII atoms into a chain motif. In this coordination polymer, the metal atom is chelated by 1,10-phenanthroline. When the N-heterocycle is replaced by 4,4'-bipyridine in the present synthesis (and with Cd replacing Mn), the dianion is now connected only indirectly, in an outer-sphere type of coordination. The two independent Cd atoms in polymeric [Cd(H2O)4(C10H8N2)]2+.(C7H4O6S)2–.H2O lie on twofold rotation axes, and each is coordinated by four water molecules and the N atoms of two 4,4'-bipyridine molecules in an octahedral geometry (Fig. 1). µ-Bridging gives rise to a chain along [-1 0 1]. The C7H4O6S2– dianion interacts indirectly through the coordinated water molecules as well as through the lattice water molecule to generate a three-dimensional network (Table 1).

Related literature top

For the 1,10-phenanthroline-chelated MnII derivative of 4-hydroxy-3-sulfonatobenzoic acid, see: Fang et al. (2011).

Experimental top

A methanol solution (5 ml) of 4,4'-bipyridine (1 mmol) was added to an aqueous solution (10 ml) of cadium(II) dichloride (1 mmol), 2-hydroxy-5-carboxybenzenesulfonic acid (2 mmol) and lithium hydroxide (4 mmol). Colorless crystals were isolated from the solution after several days.

Refinement top

Carbon bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The water and hydroxy H-atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

Omitted from the refinement is the (20 2 1) reflection.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of a portion of the structure of polymeric [Cd(H2O)4(C10H8N2)]2+.(C7H4O6S)2–.H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
catena-Poly[[(tetraaquacadmium)-µ-4,4'-bipyridine- κ2N:N'] 4-hydroxy-3-sulfonatobenzoate monohydrate] top
Crystal data top
[Cd(C10H8N2)(H2O)4](C7H4O6S)·H2OF(000) = 2320
Mr = 574.83Dx = 1.851 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 29441 reflections
a = 16.3246 (10) Åθ = 3.1–27.5°
b = 15.3063 (11) ŵ = 1.23 mm1
c = 16.5084 (10) ÅT = 293 K
V = 4124.9 (5) Å3Prism, colorless
Z = 80.18 × 0.16 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4705 independent reflections
Radiation source: fine-focus sealed tube3503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2121
Tmin = 0.810, Tmax = 0.867k = 1919
61947 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0521P)2 + 1.0723P]
where P = (Fo2 + 2Fc2)/3
4705 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.84 e Å3
11 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Cd(C10H8N2)(H2O)4](C7H4O6S)·H2OV = 4124.9 (5) Å3
Mr = 574.83Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 16.3246 (10) ŵ = 1.23 mm1
b = 15.3063 (11) ÅT = 293 K
c = 16.5084 (10) Å0.18 × 0.16 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4705 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3503 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.867Rint = 0.057
61947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03311 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.84 e Å3
4705 reflectionsΔρmin = 0.87 e Å3
334 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.440537 (18)0.75000.02271 (9)
Cd21.00000.521170 (18)1.25000.02318 (9)
S10.27334 (4)0.28183 (4)0.28084 (4)0.02442 (16)
O10.47567 (13)0.21091 (14)0.60407 (12)0.0361 (5)
O20.52506 (13)0.20519 (13)0.47897 (12)0.0312 (5)
O30.15128 (12)0.29724 (14)0.41107 (13)0.0340 (5)
H30.1118 (15)0.299 (2)0.4435 (18)0.058 (12)*
O40.23985 (15)0.36795 (13)0.26880 (13)0.0434 (6)
O50.21871 (16)0.21217 (13)0.25558 (11)0.0375 (6)
O60.35463 (14)0.27325 (16)0.24423 (11)0.0402 (6)
O1W0.57110 (17)0.34037 (17)0.67867 (17)0.0513 (6)
H110.613 (2)0.322 (3)0.702 (3)0.108 (19)*
H120.544 (3)0.296 (2)0.665 (3)0.088 (17)*
O2W0.43176 (16)0.55653 (16)0.81748 (14)0.0393 (5)
H210.398 (2)0.590 (2)0.794 (3)0.087 (16)*
H220.469 (2)0.589 (3)0.835 (3)0.081 (16)*
O3W1.06793 (15)0.62827 (16)1.17301 (14)0.0417 (5)
H311.0408 (19)0.650 (2)1.1351 (15)0.047 (11)*
H321.090 (2)0.668 (2)1.201 (2)0.075 (14)*
O4W0.91413 (15)0.41573 (15)1.30228 (15)0.0397 (5)
H410.934 (2)0.376 (2)1.331 (2)0.075 (14)*
H420.880 (2)0.396 (3)1.270 (2)0.067 (14)*
O5W0.55474 (18)0.35179 (16)0.38410 (18)0.0548 (7)
H510.549 (3)0.313 (2)0.420 (2)0.088 (16)*
H520.592 (2)0.338 (4)0.351 (3)0.12 (2)*
N10.59742 (14)0.45225 (15)0.85125 (13)0.0250 (5)
N20.90277 (14)0.52540 (14)1.14842 (13)0.0233 (5)
C10.58037 (17)0.44761 (19)0.93036 (17)0.0295 (6)
H10.52800.43080.94610.035*
C20.63744 (18)0.46683 (19)0.98969 (17)0.0283 (6)
H20.62280.46401.04410.034*
C30.71664 (17)0.49032 (17)0.96802 (16)0.0237 (6)
C40.73372 (18)0.4948 (2)0.88558 (17)0.0318 (6)
H40.78570.51060.86790.038*
C50.67325 (18)0.47571 (19)0.83037 (17)0.0313 (7)
H50.68590.47940.77550.038*
C60.82516 (17)0.54887 (18)1.16227 (16)0.0259 (6)
H60.81200.57191.21270.031*
C70.76329 (17)0.54064 (17)1.10549 (17)0.0270 (6)
H70.71020.55771.11820.032*
C80.78081 (16)0.50689 (17)1.02957 (16)0.0228 (5)
C90.86225 (18)0.48489 (19)1.01436 (17)0.0297 (6)
H90.87750.46410.96360.036*
C100.92024 (17)0.4940 (2)1.07458 (17)0.0307 (6)
H100.97390.47771.06340.037*
C110.46607 (17)0.21484 (17)0.52932 (17)0.0257 (6)
C120.38208 (16)0.23377 (16)0.49698 (15)0.0230 (5)
C130.31673 (17)0.24312 (19)0.55095 (16)0.0291 (6)
H130.32550.23520.60610.035*
C140.23932 (17)0.26394 (19)0.52330 (18)0.0314 (6)
H140.19630.26940.55990.038*
C150.22524 (16)0.27683 (17)0.44052 (16)0.0247 (6)
C160.29036 (16)0.26767 (17)0.38635 (15)0.0219 (5)
C170.36795 (15)0.24627 (17)0.41485 (15)0.0226 (5)
H170.41100.24020.37840.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01869 (15)0.02822 (17)0.02123 (15)0.0000.00454 (10)0.000
Cd20.01997 (16)0.02926 (17)0.02031 (15)0.0000.00523 (10)0.000
S10.0210 (3)0.0301 (3)0.0222 (3)0.0000 (3)0.0007 (3)0.0001 (3)
O10.0266 (10)0.0589 (15)0.0229 (10)0.0022 (9)0.0043 (9)0.0086 (9)
O20.0193 (9)0.0450 (12)0.0293 (10)0.0032 (9)0.0011 (8)0.0042 (9)
O30.0146 (10)0.0531 (14)0.0344 (11)0.0061 (9)0.0003 (9)0.0076 (10)
O40.0603 (16)0.0316 (11)0.0384 (12)0.0103 (11)0.0041 (11)0.0065 (9)
O50.0385 (13)0.0429 (13)0.0311 (12)0.0131 (10)0.0075 (9)0.0063 (9)
O60.0259 (12)0.0698 (16)0.0250 (11)0.0036 (11)0.0068 (8)0.0025 (10)
O1W0.0437 (16)0.0475 (15)0.0626 (17)0.0170 (13)0.0110 (13)0.0224 (13)
O2W0.0416 (15)0.0423 (13)0.0341 (12)0.0117 (12)0.0008 (11)0.0035 (10)
O3W0.0479 (15)0.0411 (13)0.0360 (12)0.0127 (11)0.0121 (11)0.0125 (11)
O4W0.0333 (13)0.0401 (13)0.0457 (14)0.0076 (10)0.0082 (11)0.0139 (11)
O5W0.0587 (18)0.0380 (14)0.0675 (18)0.0051 (12)0.0140 (15)0.0150 (13)
N10.0229 (12)0.0302 (12)0.0220 (11)0.0000 (10)0.0062 (10)0.0019 (10)
N20.0215 (12)0.0281 (12)0.0202 (11)0.0024 (9)0.0063 (9)0.0011 (9)
C10.0218 (14)0.0377 (16)0.0290 (15)0.0049 (12)0.0015 (12)0.0035 (12)
C20.0270 (15)0.0381 (15)0.0198 (13)0.0031 (12)0.0010 (11)0.0020 (12)
C30.0226 (14)0.0263 (13)0.0222 (12)0.0002 (11)0.0046 (12)0.0001 (10)
C40.0192 (14)0.0518 (17)0.0245 (14)0.0046 (13)0.0006 (11)0.0010 (13)
C50.0239 (15)0.0512 (19)0.0189 (13)0.0016 (13)0.0019 (11)0.0010 (12)
C60.0257 (15)0.0301 (14)0.0219 (13)0.0033 (12)0.0003 (11)0.0031 (11)
C70.0202 (14)0.0355 (15)0.0252 (14)0.0009 (12)0.0019 (11)0.0003 (12)
C80.0214 (13)0.0257 (13)0.0213 (12)0.0005 (11)0.0041 (12)0.0026 (10)
C90.0239 (15)0.0411 (17)0.0240 (13)0.0035 (12)0.0031 (12)0.0047 (12)
C100.0217 (14)0.0425 (16)0.0278 (15)0.0033 (13)0.0029 (12)0.0040 (13)
C110.0206 (14)0.0292 (14)0.0273 (14)0.0024 (11)0.0014 (12)0.0059 (11)
C120.0179 (13)0.0266 (13)0.0246 (13)0.0010 (11)0.0008 (10)0.0017 (11)
C130.0260 (15)0.0388 (16)0.0225 (13)0.0004 (13)0.0001 (11)0.0026 (12)
C140.0248 (15)0.0430 (17)0.0263 (14)0.0013 (13)0.0089 (12)0.0015 (12)
C150.0155 (12)0.0287 (14)0.0298 (14)0.0007 (11)0.0031 (11)0.0027 (11)
C160.0213 (13)0.0229 (13)0.0217 (12)0.0014 (10)0.0001 (11)0.0020 (10)
C170.0172 (13)0.0238 (13)0.0268 (13)0.0016 (10)0.0028 (11)0.0035 (11)
Geometric parameters (Å, º) top
Cd1—O1Wi2.255 (2)N1—C11.337 (3)
Cd1—O1W2.255 (2)N2—C61.337 (3)
Cd1—N12.314 (2)N2—C101.341 (3)
Cd1—N1i2.314 (2)C1—C21.383 (4)
Cd1—O2W2.374 (2)C1—H10.9300
Cd1—O2Wi2.374 (2)C2—C31.389 (4)
Cd2—O4W2.305 (2)C2—H20.9300
Cd2—O4Wii2.305 (2)C3—C41.391 (4)
Cd2—N2ii2.310 (2)C3—C81.481 (4)
Cd2—N22.310 (2)C4—C51.375 (4)
Cd2—O3Wii2.352 (2)C4—H40.9300
Cd2—O3W2.352 (2)C5—H50.9300
S1—O41.441 (2)C6—C71.384 (4)
S1—O51.451 (2)C6—H60.9300
S1—O61.464 (2)C7—C81.385 (4)
S1—C161.777 (3)C7—H70.9300
O1—C111.245 (3)C8—C91.394 (4)
O2—C111.281 (4)C9—C101.380 (4)
O3—C151.338 (3)C9—H90.9300
O3—H30.838 (10)C10—H100.9300
O1W—H110.838 (10)C11—C121.500 (4)
O1W—H120.842 (10)C12—C171.388 (3)
O2W—H210.842 (10)C12—C131.397 (4)
O2W—H220.840 (10)C13—C141.381 (4)
O3W—H310.835 (10)C13—H130.9300
O3W—H320.840 (10)C14—C151.400 (4)
O4W—H410.838 (10)C14—H140.9300
O4W—H420.835 (10)C15—C161.396 (4)
O5W—H510.842 (10)C16—C171.390 (3)
O5W—H520.840 (10)C17—H170.9300
N1—C51.334 (4)
O1Wi—Cd1—O1W94.32 (16)C6—N2—Cd2122.33 (17)
O1Wi—Cd1—N191.68 (9)C10—N2—Cd2120.25 (18)
O1W—Cd1—N194.36 (9)N1—C1—C2122.7 (3)
O1Wi—Cd1—N1i94.36 (9)N1—C1—H1118.7
O1W—Cd1—N1i91.68 (9)C2—C1—H1118.7
N1—Cd1—N1i171.11 (11)C1—C2—C3120.0 (3)
O1Wi—Cd1—O2W91.26 (10)C1—C2—H2120.0
O1W—Cd1—O2W174.42 (10)C3—C2—H2120.0
N1—Cd1—O2W85.73 (8)C2—C3—C4116.8 (3)
N1i—Cd1—O2W87.62 (8)C2—C3—C8121.7 (2)
O1Wi—Cd1—O2Wi174.42 (10)C4—C3—C8121.4 (3)
O1W—Cd1—O2Wi91.26 (10)C5—C4—C3119.6 (3)
N1—Cd1—O2Wi87.62 (8)C5—C4—H4120.2
N1i—Cd1—O2Wi85.73 (8)C3—C4—H4120.2
O2W—Cd1—O2Wi83.17 (12)N1—C5—C4123.5 (3)
O4W—Cd2—O4Wii91.14 (13)N1—C5—H5118.2
O4W—Cd2—N2ii99.54 (8)C4—C5—H5118.2
O4Wii—Cd2—N2ii82.74 (8)N2—C6—C7123.5 (2)
O4W—Cd2—N282.74 (8)N2—C6—H6118.3
O4Wii—Cd2—N299.54 (8)C7—C6—H6118.3
N2ii—Cd2—N2176.79 (11)C6—C7—C8119.7 (3)
O4W—Cd2—O3Wii89.94 (9)C6—C7—H7120.1
O4Wii—Cd2—O3Wii167.66 (8)C8—C7—H7120.1
N2ii—Cd2—O3Wii84.96 (8)C7—C8—C9116.7 (2)
N2—Cd2—O3Wii92.80 (8)C7—C8—C3122.6 (3)
O4W—Cd2—O3W167.66 (8)C9—C8—C3120.6 (3)
O4Wii—Cd2—O3W89.94 (9)C10—C9—C8120.0 (3)
N2ii—Cd2—O3W92.80 (8)C10—C9—H9120.0
N2—Cd2—O3W84.96 (8)C8—C9—H9120.0
O3Wii—Cd2—O3W91.63 (13)N2—C10—C9123.1 (3)
O4—S1—O5113.53 (15)N2—C10—H10118.5
O4—S1—O6111.66 (14)C9—C10—H10118.5
O5—S1—O6111.87 (14)O1—C11—O2122.9 (3)
O4—S1—C16107.83 (13)O1—C11—C12118.5 (2)
O5—S1—C16106.75 (12)O2—C11—C12118.6 (3)
O6—S1—C16104.60 (12)C17—C12—C13118.8 (2)
C15—O3—H3118 (3)C17—C12—C11121.7 (2)
Cd1—O1W—H11114 (4)C13—C12—C11119.4 (2)
Cd1—O1W—H12115 (4)C14—C13—C12120.8 (2)
H11—O1W—H12106 (5)C14—C13—H13119.6
Cd1—O2W—H21123 (3)C12—C13—H13119.6
Cd1—O2W—H22105 (3)C13—C14—C15120.4 (3)
H21—O2W—H22106 (4)C13—C14—H14119.8
Cd2—O3W—H31116 (3)C15—C14—H14119.8
Cd2—O3W—H32114 (3)O3—C15—C16118.5 (2)
H31—O3W—H32111 (4)O3—C15—C14122.4 (3)
Cd2—O4W—H41119 (3)C16—C15—C14119.1 (2)
Cd2—O4W—H42115 (3)C17—C16—C15120.0 (2)
H41—O4W—H42111 (4)C17—C16—S1120.2 (2)
H51—O5W—H52111 (5)C15—C16—S1119.8 (2)
C5—N1—C1117.4 (2)C12—C17—C16120.9 (2)
C5—N1—Cd1118.16 (18)C12—C17—H17119.5
C1—N1—Cd1123.94 (19)C16—C17—H17119.5
C6—N2—C10117.0 (2)
O1Wi—Cd1—N1—C5152.5 (2)C4—C3—C8—C7150.8 (3)
O1W—Cd1—N1—C558.0 (2)C2—C3—C8—C9145.6 (3)
O2W—Cd1—N1—C5116.4 (2)C4—C3—C8—C932.3 (4)
O2Wi—Cd1—N1—C533.0 (2)C7—C8—C9—C102.4 (4)
O1Wi—Cd1—N1—C136.2 (2)C3—C8—C9—C10174.7 (3)
O1W—Cd1—N1—C1130.6 (2)C6—N2—C10—C90.4 (4)
O2W—Cd1—N1—C155.0 (2)Cd2—N2—C10—C9171.9 (2)
O2Wi—Cd1—N1—C1138.3 (2)C8—C9—C10—N21.5 (5)
O4W—Cd2—N2—C662.7 (2)O1—C11—C12—C17174.6 (2)
O4Wii—Cd2—N2—C6152.6 (2)O2—C11—C12—C174.0 (4)
O3Wii—Cd2—N2—C626.9 (2)O1—C11—C12—C132.4 (4)
O3W—Cd2—N2—C6118.3 (2)O2—C11—C12—C13179.0 (2)
O4W—Cd2—N2—C10109.3 (2)C17—C12—C13—C140.4 (4)
O4Wii—Cd2—N2—C1019.3 (2)C11—C12—C13—C14177.5 (3)
O3Wii—Cd2—N2—C10161.2 (2)C12—C13—C14—C150.6 (4)
O3W—Cd2—N2—C1069.8 (2)C13—C14—C15—O3179.9 (3)
C5—N1—C1—C20.7 (4)C13—C14—C15—C160.5 (4)
Cd1—N1—C1—C2170.7 (2)O3—C15—C16—C17179.8 (2)
N1—C1—C2—C31.4 (5)C14—C15—C16—C170.2 (4)
C1—C2—C3—C41.2 (4)O3—C15—C16—S10.8 (3)
C1—C2—C3—C8176.7 (3)C14—C15—C16—S1178.9 (2)
C2—C3—C4—C50.4 (4)O4—S1—C16—C17123.5 (2)
C8—C3—C4—C5177.5 (3)O5—S1—C16—C17114.2 (2)
C1—N1—C5—C40.2 (4)O6—S1—C16—C174.5 (3)
Cd1—N1—C5—C4172.1 (2)O4—S1—C16—C1557.5 (2)
C3—C4—C5—N10.3 (5)O5—S1—C16—C1564.9 (2)
C10—N2—C6—C71.3 (4)O6—S1—C16—C15176.4 (2)
Cd2—N2—C6—C7170.8 (2)C13—C12—C17—C160.0 (4)
N2—C6—C7—C80.3 (4)C11—C12—C17—C16177.1 (2)
C6—C7—C8—C91.6 (4)C15—C16—C17—C120.1 (4)
C6—C7—C8—C3175.5 (2)S1—C16—C17—C12179.1 (2)
C2—C3—C8—C731.4 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+2, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O5iii0.84 (1)1.93 (1)2.762 (4)171 (5)
O1w—H12···O10.84 (1)1.99 (2)2.805 (3)163 (5)
O2w—H21···O6iv0.84 (1)2.36 (2)3.136 (3)154 (4)
O2w—H22···O5wiv0.84 (1)1.85 (1)2.685 (4)173 (5)
O3w—H31···O2v0.84 (1)2.08 (2)2.858 (3)155 (3)
O3w—H32···O6vi0.84 (1)1.99 (1)2.812 (3)167 (4)
O4w—H41···O1vii0.84 (1)1.84 (1)2.675 (3)178 (4)
O4w—H42···O4i0.84 (1)2.10 (2)2.869 (3)154 (4)
O5w—H51···O20.84 (1)1.96 (2)2.779 (3)166 (5)
O5w—H52···O6viii0.84 (1)2.06 (2)2.850 (4)157 (6)
O3—H3···O2ix0.84 (1)1.91 (1)2.746 (3)176 (4)
Symmetry codes: (i) x+1, y, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z+1/2; (v) x+1/2, y+1/2, z+3/2; (vi) x+3/2, y+1/2, z+1; (vii) x+1/2, y+1/2, z+2; (viii) x+1, y, z+1/2; (ix) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C10H8N2)(H2O)4](C7H4O6S)·H2O
Mr574.83
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)16.3246 (10), 15.3063 (11), 16.5084 (10)
V3)4124.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.810, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
61947, 4705, 3503
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.04
No. of reflections4705
No. of parameters334
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.87

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O5i0.84 (1)1.93 (1)2.762 (4)171 (5)
O1w—H12···O10.84 (1)1.99 (2)2.805 (3)163 (5)
O2w—H21···O6ii0.84 (1)2.36 (2)3.136 (3)154 (4)
O2w—H22···O5wii0.84 (1)1.85 (1)2.685 (4)173 (5)
O3w—H31···O2iii0.84 (1)2.08 (2)2.858 (3)155 (3)
O3w—H32···O6iv0.84 (1)1.99 (1)2.812 (3)167 (4)
O4w—H41···O1v0.84 (1)1.84 (1)2.675 (3)178 (4)
O4w—H42···O4vi0.84 (1)2.10 (2)2.869 (3)154 (4)
O5w—H51···O20.84 (1)1.96 (2)2.779 (3)166 (5)
O5w—H52···O6vii0.84 (1)2.06 (2)2.850 (4)157 (6)
O3—H3···O2viii0.84 (1)1.91 (1)2.746 (3)176 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+3/2, y+1/2, z+1; (v) x+1/2, y+1/2, z+2; (vi) x+1, y, z+3/2; (vii) x+1, y, z+1/2; (viii) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFang, X.-Q., Chen, P.-G., Zhu, Z.-B., Deng, Z.-P. & Gao, S. (2011). Chin. J. Inorg. Chem. 27, 1733–1737.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds