metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(acetato-κ2O,O′)aqua­cadmium]-μ-[(pyridin-3-yl)(pyridin-4-yl)methanone]-κ2N:N′] dihydrate]

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn

(Received 24 April 2012; accepted 28 April 2012; online 5 May 2012)

In the title complex, {[Cd(CH3COO)2(C11H8N2O)(H2O)]·2H2O}n, the CdII ion adopts an O5N2 penta­gonal–bipyramidal coordination geometry with four acetate O atoms and one water O atom at the equatorial sites and two pyridine N atoms at the axial sites. The (pyridin-3-yl)(pyridin-4-yl)methanone ligand acts in a μ2-bridging mode, linking the metal atoms, leading to an infinite chain along [-110]. O—H⋯O hydrogen bonds involving the lattice water mol­ecules connect these chains into a three-dimensional network.

Related literature

For the coordination chemistry of pyridyl-based derivatives, see: Zhao et al. (2004[Zhao, B., Cheng, P., Chen, X., Cheng, C., Shi, W., Liao, D. Z., Yan, S. P. & Jiang, Z. (2004). J. Am. Chem. Soc. 126, 3012-3013.]); Wang et al. (2009[Wang, Y., Zhao, X.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 2137-2145.]). For background to di-2-pyridinyl­methanone see: Boudalis et al. (2003[Boudalis, A. K., Dahan, F., Bousseksou, A., Tuchagues, J. P. & Perlepes, J. P. (2003). Dalton Trans. pp. 3411-3418.]). For the transition metal complexes of the positional isomers of di-2-pyridinyl­methanone, see: Chen, Guo et al. (2005[Chen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766-768.]); Chen et al. (2009[Chen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518-6528.]); Chen, Du & Mak (2005[Chen, X. D., Du, M. & Mak, T. C. W. (2005). Chem. Commun. pp. 4117-4119.]); Chen & Mak (2005[Chen, X. D. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 393-396.]); Famum et al. (2009[Famum, G. A., Montney, M. R., Supkowski, R. M. & LaDuca, R. L. (2009). Z. Anorg. Allg. Chem. 635, 1549-1550.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2H3O2)2(C11H8N2O)(H2O)]·2H2O

  • Mr = 468.73

  • Triclinic, [P \overline 1]

  • a = 8.545 (2) Å

  • b = 10.699 (3) Å

  • c = 11.215 (3) Å

  • α = 76.903 (5)°

  • β = 87.833 (5)°

  • γ = 77.160 (5)°

  • V = 973.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 K

  • 0.38 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.840, Tmax = 1.000

  • 6828 measured reflections

  • 4747 independent reflections

  • 4041 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.05

  • 4747 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4 0.89 2.06 2.773 (2) 136
O1W—H1WB⋯O2w 0.89 2.00 2.834 (3) 155
O2W—H2WA⋯O2 0.89 1.93 2.811 (4) 173
O2W—H2WB⋯O1wi 0.89 1.95 2.803 (2) 162
O3W—H3WA⋯O5ii 0.89 1.80 2.679 (2) 172
O3W—H3WB⋯O3iii 0.89 1.81 2.693 (3) 170
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridyl-based ligand are widely and successfully used to construction intriguing supramolecular archtectures with various transition metal salts (Zhao et al. 2004; Wang et al., 2009). The coordination chemistry of di-2-pyridinylmethanone (di-2-pyridyl ketone, DPK), (2-C5H4N)2CO, has been phenomenally developed in the past decades (Boudalis et al., 2003). The coordination chemistry of its positional isomers such di-3-pyridinylmethanone(Chen, Guo et al. 2005; Chen et al., 2009),2-pyridinyl-3-pyridinylmethanone (Chen, Du & Mak, 2005) and 2-pyridinyl-4-pyridinylmethanone (Chen & Mak, 2005) have also be well explored. Herein, we report a new structure derived from 3-pyridinyl-4-pyridinylmethanone (Scheme 1), namely {[Cd(C11H8N2O)(CH3CO2)2(H2O)].2H2O}.

As shown in Fig. 1, the CdII ion adopts an O5N2-pentagonal bipyramid coordination geometry with four acetate O atoms and one auqa O3w atom at the equatorial sites and two pyridyl N atoms at the axial sites (Fig. 1). As shown in Fig. 2, The 3-pyridinyl-4-pyridinylmethanone (3,4'-dipyridyl ketone) ligand fonctions as a µ2-bridging mode linking to the CdII centers, leading to an infinite chain structure alone the [-110] direction. Such a 1-D structure sharply differs from the 2-D net of catena-[[bis(u2-3,4'-dipyridyl ketone-κ N:N')-diaqua-cadmium(II)] diperchlorate dihydrate] (Famum et al., 2009) with 3-pyridinyl-4-pyridinylmethanone.Two interconnected lattice water molecules (O1w and O2w) respectively anchor to two separated acetate around the CdII center through hydrogen bonding interactions (Fig.1, Table 1), which further link to their symmetry-related ones to form a tetramer (O1w···O2w···O1wii···O2wii, see Fig. 3 and Table 1, symmetry code: ii -x + 1, -y + 2, -z + 1). The tetrameric water cluster with a invert center thus functions as a linkage to bridge the parallel chains together through H-bonding interactions, which combine the O3W—H3WB···O5iii(acetate) interactions to assemble with the infinite chains into a layer, as shown in Fig. 3 (iii -x + 2, -y + 1, -z + 2). Along the [110] direction, the almost parallel layers formed are stacked and stablized through another set of H-bonding interactions of O3w [O3W—H3WB···O3iv(acetate), iv -x+1, -y+1, -z+2. see Table 1], forming a three-dimensional frameworks.

Related literature top

For the coordination chemistry of pyridyl-based derivatives, see: Zhao et al. (2004); Wang et al. (2009). For background to di-2-pyridinylmethanone see: Boudalis et al. (2003). For the transition metal complexes of the positional isomers of di-2-pyridinylmethanone, see: Chen, Guo et al. (2005); Chen et al. (2009); Chen, Du & Mak (2005); Chen & Mak (2005); Famum et al. (2009).

Experimental top

The ligand was prepared according to the procedure of the literature reported (Chen & Mak 2005). The Cd(CH3CO2)2.2H2O (30 mg, 0.12 mmol) and 3-pyridinyl-4-pyridinylmethanone (19 mg, 0.1 mmol) were dissolved in a mixed solvent of 1 ml deionized water and 3 ml acetonitrile with stirring at room temperature. After 3 hours, the resulted clear solution was filtered and the filtrate was left to stand in air. The clolorless crystals suitable for x-ray diffraction analysis were deposited after about two weaks (23.9 mg, 52% yield).

Refinement top

All the H atoms were located in the difference electron density maps but were placed in idealized positions and allowed to ride on the carrier atoms, with O—H = 0.89 Å, C—H = 0.93 Å and 0.96 Å for aryl H and methyl H aotms, respectively, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl, O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title complex showing the atom-numbering scheme, with displacement ellipsoids shown at the 30% probability level. All aryl hydrogen atoms are omitted for clarity. Symmetry codes: (i) x - 1, y + 1, z.
[Figure 2] Fig. 2. Infinite chain structure along the [-1 1 0] direction of the title complex.The O atoms of the water were shown as red balls, and all aryl H atoms are omitted for clarity.
[Figure 3] Fig. 3. The hydrogen-bonding interactions that assemble with the infinite chain structures. The red-dashed lines represent hydrogen-bonding interactions. All water O atoms were shown as red balls, and all aryl H atoms are omitted for clarity.
catena-Poly[[[bis(acetato-κ2O,O')aquacadmium]-µ- [(pyridin-3-yl)(pyridin-4-yl)methanone]-κ2N:N'] dihydrate] top
Crystal data top
[Cd(C2H3O2)2(C11H8N2O)(H2O)]·2H2OZ = 2
Mr = 468.73F(000) = 472
Triclinic, P1Dx = 1.599 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.545 (2) ÅCell parameters from 215 reflections
b = 10.699 (3) Åθ = 1.9–28.4°
c = 11.215 (3) ŵ = 1.16 mm1
α = 76.903 (5)°T = 293 K
β = 87.833 (5)°Block, colorless
γ = 77.160 (5)°0.38 × 0.20 × 0.18 mm
V = 973.5 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4747 independent reflections
Radiation source: fine-focus sealed tube4041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.840, Tmax = 1.000k = 914
6828 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0412P)2] P = (Fo2 + 2Fc2)/3
4747 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cd(C2H3O2)2(C11H8N2O)(H2O)]·2H2Oγ = 77.160 (5)°
Mr = 468.73V = 973.5 (5) Å3
Triclinic, P1Z = 2
a = 8.545 (2) ÅMo Kα radiation
b = 10.699 (3) ŵ = 1.16 mm1
c = 11.215 (3) ÅT = 293 K
α = 76.903 (5)°0.38 × 0.20 × 0.18 mm
β = 87.833 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4747 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4041 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 1.000Rint = 0.023
6828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
4747 reflectionsΔρmin = 0.33 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.73166 (2)0.608007 (18)0.821278 (16)0.03377 (8)
N10.8989 (3)0.4149 (2)0.7726 (2)0.0405 (6)
N21.5508 (3)0.2090 (2)0.8722 (2)0.0417 (6)
O11.1137 (3)0.0944 (3)1.0377 (2)0.0685 (8)
C10.9091 (4)0.4024 (4)0.6568 (3)0.0582 (10)
H1A0.84910.46890.59710.070*
C21.0037 (5)0.2965 (4)0.6219 (3)0.0688 (12)
H2A1.00970.29280.53980.083*
C31.0909 (4)0.1944 (3)0.7093 (3)0.0548 (9)
H3A1.15410.12050.68750.066*
C41.0812 (3)0.2054 (3)0.8303 (3)0.0391 (6)
C50.9845 (3)0.3188 (3)0.8561 (3)0.0384 (6)
H5A0.97980.32760.93690.046*
C61.1627 (4)0.0998 (3)0.9342 (3)0.0435 (7)
C71.4426 (4)0.2286 (3)0.9592 (3)0.0463 (7)
H7A1.45050.31321.00670.056*
C81.3195 (4)0.1299 (3)0.9822 (3)0.0448 (7)
H8A1.24800.14811.04500.054*
C91.3027 (3)0.0036 (3)0.9114 (2)0.0380 (6)
C101.4176 (4)0.0188 (3)0.8233 (3)0.0462 (7)
H10A1.41370.10280.77570.055*
C111.5389 (4)0.0866 (3)0.8074 (3)0.0464 (7)
H11A1.61570.07060.74830.056*
O50.9921 (3)0.6479 (2)0.85165 (19)0.0476 (5)
O20.5727 (3)0.6074 (2)0.64724 (19)0.0518 (6)
O30.5016 (3)0.5111 (2)0.82736 (19)0.0484 (5)
O40.8583 (3)0.7585 (2)0.68529 (19)0.0520 (5)
C140.9794 (4)0.7337 (3)0.7540 (3)0.0421 (7)
C151.1079 (5)0.8105 (4)0.7191 (4)0.0762 (12)
H15A1.19390.76070.68020.114*
H15B1.14810.82760.79120.114*
H15C1.06370.89240.66350.114*
C120.4849 (4)0.5416 (3)0.7123 (3)0.0453 (7)
C130.3582 (5)0.4955 (5)0.6545 (4)0.0817 (13)
H13A0.35830.52740.56730.122*
H13B0.25480.52870.68560.122*
H13C0.38070.40110.67370.122*
O3W0.7517 (3)0.5164 (3)1.02658 (19)0.0601 (7)
O1W0.7280 (4)0.9615 (3)0.4905 (3)0.0903 (10)
O2W0.4924 (4)0.8260 (3)0.4497 (3)0.0989 (11)
H2WA0.51920.75280.50800.148*
H2WB0.40680.88250.46820.148*
H1WB0.67740.90790.46500.148*
H3WA0.83720.46771.07090.148*
H3WB0.67510.50701.08180.148*
H1WA0.78170.93480.56150.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03121 (12)0.02824 (11)0.03400 (12)0.00510 (7)0.00321 (7)0.00279 (8)
N10.0415 (13)0.0352 (13)0.0381 (12)0.0071 (10)0.0005 (10)0.0097 (10)
N20.0393 (13)0.0308 (12)0.0453 (13)0.0059 (10)0.0064 (10)0.0027 (10)
O10.0837 (19)0.0541 (15)0.0451 (12)0.0237 (13)0.0146 (12)0.0053 (11)
C10.062 (2)0.054 (2)0.0431 (17)0.0222 (17)0.0081 (15)0.0130 (15)
C20.079 (3)0.073 (3)0.0398 (17)0.029 (2)0.0093 (16)0.0260 (17)
C30.058 (2)0.0506 (19)0.0475 (17)0.0171 (16)0.0052 (15)0.0219 (15)
C40.0375 (15)0.0319 (14)0.0416 (15)0.0074 (11)0.0004 (11)0.0103 (12)
C50.0388 (15)0.0332 (15)0.0380 (14)0.0055 (12)0.0028 (11)0.0109 (12)
C60.0488 (17)0.0332 (15)0.0428 (15)0.0041 (13)0.0027 (13)0.0103 (12)
C70.0456 (17)0.0302 (15)0.0507 (17)0.0053 (12)0.0112 (13)0.0012 (13)
C80.0457 (17)0.0333 (15)0.0453 (16)0.0015 (13)0.0140 (13)0.0002 (13)
C90.0393 (15)0.0320 (14)0.0362 (14)0.0058 (11)0.0024 (11)0.0075 (11)
C100.0501 (18)0.0297 (15)0.0476 (16)0.0032 (13)0.0068 (13)0.0012 (13)
C110.0425 (17)0.0376 (16)0.0496 (17)0.0018 (13)0.0105 (13)0.0022 (13)
O50.0453 (12)0.0503 (13)0.0417 (11)0.0059 (10)0.0038 (9)0.0024 (10)
O20.0492 (13)0.0550 (14)0.0410 (11)0.0053 (11)0.0027 (9)0.0038 (10)
O30.0477 (12)0.0551 (14)0.0379 (11)0.0097 (10)0.0043 (9)0.0030 (10)
O40.0488 (13)0.0518 (13)0.0474 (12)0.0076 (10)0.0047 (10)0.0027 (10)
C140.0388 (16)0.0416 (16)0.0456 (16)0.0042 (13)0.0069 (12)0.0149 (14)
C150.071 (3)0.080 (3)0.085 (3)0.039 (2)0.014 (2)0.015 (2)
C120.0355 (15)0.0491 (18)0.0477 (17)0.0001 (13)0.0037 (13)0.0129 (14)
C130.069 (3)0.124 (4)0.070 (3)0.035 (3)0.007 (2)0.046 (3)
O3W0.0433 (12)0.0789 (18)0.0368 (11)0.0075 (12)0.0039 (9)0.0095 (11)
O1W0.110 (3)0.079 (2)0.0571 (16)0.0117 (18)0.0076 (16)0.0015 (15)
O2W0.129 (3)0.067 (2)0.0707 (19)0.0134 (19)0.0083 (18)0.0106 (16)
Geometric parameters (Å, º) top
Cd1—O3W2.286 (2)C7—H7A0.9300
Cd1—O42.372 (2)C8—C91.383 (4)
Cd1—N2i2.375 (2)C8—H8A0.9300
Cd1—N12.398 (2)C9—C101.386 (4)
Cd1—O52.408 (2)C10—C111.391 (4)
Cd1—O32.410 (2)C10—H10A0.9300
Cd1—O22.422 (2)C11—H11A0.9300
Cd1—C142.747 (3)O5—C141.250 (4)
N1—C51.323 (3)O2—C121.245 (4)
N1—C11.333 (4)O3—C121.262 (4)
N2—C111.330 (4)O4—C141.257 (4)
N2—C71.332 (4)C14—C151.502 (5)
N2—Cd1ii2.375 (2)C15—H15A0.9600
O1—C61.213 (4)C15—H15B0.9600
C1—C21.364 (5)C15—H15C0.9600
C1—H1A0.9300C12—C131.507 (5)
C2—C31.384 (4)C13—H13A0.9600
C2—H2A0.9300C13—H13B0.9600
C3—C41.386 (4)C13—H13C0.9600
C3—H3A0.9300O3W—H3WA0.8900
C4—C51.391 (4)O3W—H3WB0.8900
C4—C61.494 (4)O1W—H1WB0.8902
C5—H5A0.9300O1W—H1WA0.8899
C6—C91.496 (4)O2W—H2WA0.8900
C7—C81.378 (4)O2W—H2WB0.8900
O3W—Cd1—O4134.73 (9)O1—C6—C4120.6 (3)
O3W—Cd1—N2i86.76 (9)O1—C6—C9118.9 (3)
O4—Cd1—N2i88.26 (9)C4—C6—C9120.5 (2)
O3W—Cd1—N192.22 (8)N2—C7—C8123.3 (3)
O4—Cd1—N195.29 (9)N2—C7—H7A118.3
N2i—Cd1—N1175.86 (9)C8—C7—H7A118.3
O3W—Cd1—O583.51 (8)C7—C8—C9119.7 (3)
O4—Cd1—O554.23 (7)C7—C8—H8A120.2
N2i—Cd1—O5103.67 (9)C9—C8—H8A120.2
N1—Cd1—O580.18 (9)C8—C9—C10117.5 (3)
O3W—Cd1—O384.81 (8)C8—C9—C6118.4 (3)
O4—Cd1—O3139.62 (7)C10—C9—C6124.2 (3)
N2i—Cd1—O386.02 (9)C9—C10—C11118.9 (3)
N1—Cd1—O389.90 (9)C9—C10—H10A120.6
O5—Cd1—O3164.34 (7)C11—C10—H10A120.6
O3W—Cd1—O2138.18 (9)N2—C11—C10123.5 (3)
O4—Cd1—O287.04 (8)N2—C11—H11A118.3
N2i—Cd1—O293.99 (9)C10—C11—H11A118.3
N1—Cd1—O284.09 (8)C14—O5—Cd191.75 (18)
O5—Cd1—O2136.00 (7)C12—O2—Cd192.67 (19)
O3—Cd1—O253.64 (7)C12—O3—Cd192.80 (19)
O3W—Cd1—C14109.10 (9)C14—O4—Cd193.23 (18)
O4—Cd1—C1427.19 (8)O5—C14—O4120.7 (3)
N2i—Cd1—C1496.00 (9)O5—C14—C15120.0 (3)
N1—Cd1—C1488.13 (9)O4—C14—C15119.3 (3)
O5—Cd1—C1427.06 (8)O5—C14—Cd161.19 (16)
O3—Cd1—C14166.01 (8)O4—C14—Cd159.58 (16)
O2—Cd1—C14112.38 (8)C15—C14—Cd1176.2 (2)
C5—N1—C1117.5 (2)C14—C15—H15A109.5
C5—N1—Cd1122.83 (18)C14—C15—H15B109.5
C1—N1—Cd1119.61 (19)H15A—C15—H15B109.5
C11—N2—C7117.1 (2)C14—C15—H15C109.5
C11—N2—Cd1ii122.53 (19)H15A—C15—H15C109.5
C7—N2—Cd1ii119.83 (19)H15B—C15—H15C109.5
N1—C1—C2122.9 (3)O2—C12—O3120.8 (3)
N1—C1—H1A118.5O2—C12—C13120.3 (3)
C2—C1—H1A118.5O3—C12—C13118.9 (3)
C1—C2—C3119.8 (3)C12—C13—H13A109.5
C1—C2—H2A120.1C12—C13—H13B109.5
C3—C2—H2A120.1H13A—C13—H13B109.5
C2—C3—C4118.1 (3)C12—C13—H13C109.5
C2—C3—H3A120.9H13A—C13—H13C109.5
C4—C3—H3A120.9H13B—C13—H13C109.5
C3—C4—C5117.8 (3)Cd1—O3W—H3WA129.2
C3—C4—C6123.5 (3)Cd1—O3W—H3WB130.0
C5—C4—C6118.6 (2)H3WA—O3W—H3WB100.0
N1—C5—C4123.9 (3)H1WB—O1W—H1WA120.0
N1—C5—H5A118.1H2WA—O2W—H2WB113.1
C4—C5—H5A118.1
O3W—Cd1—N1—C512.4 (3)O3W—Cd1—O2—C125.4 (2)
O4—Cd1—N1—C5122.9 (3)O4—Cd1—O2—C12172.26 (19)
N2i—Cd1—N1—C588.0 (11)N2i—Cd1—O2—C1284.20 (19)
O5—Cd1—N1—C570.6 (2)N1—Cd1—O2—C1292.11 (19)
O3—Cd1—N1—C597.2 (3)O5—Cd1—O2—C12161.38 (17)
O2—Cd1—N1—C5150.6 (3)O3—Cd1—O2—C122.13 (17)
C14—Cd1—N1—C596.7 (3)C14—Cd1—O2—C12177.63 (18)
O3W—Cd1—N1—C1168.4 (3)O3W—Cd1—O3—C12172.87 (19)
O4—Cd1—N1—C156.3 (3)O4—Cd1—O3—C1217.4 (2)
N2i—Cd1—N1—C192.7 (11)N2i—Cd1—O3—C12100.03 (19)
O5—Cd1—N1—C1108.6 (3)N1—Cd1—O3—C1280.64 (19)
O3—Cd1—N1—C183.6 (3)O5—Cd1—O3—C12131.0 (3)
O2—Cd1—N1—C130.1 (3)O2—Cd1—O3—C122.10 (17)
C14—Cd1—N1—C182.6 (3)C14—Cd1—O3—C121.2 (4)
C5—N1—C1—C20.4 (6)O3W—Cd1—O4—C1423.0 (2)
Cd1—N1—C1—C2178.9 (4)N2i—Cd1—O4—C14106.73 (19)
N1—C1—C2—C31.8 (7)N1—Cd1—O4—C1475.40 (19)
C1—C2—C3—C41.5 (7)O5—Cd1—O4—C141.53 (16)
C2—C3—C4—C50.1 (6)O3—Cd1—O4—C14171.49 (16)
C2—C3—C4—C6177.0 (4)O2—Cd1—O4—C14159.18 (19)
C1—N1—C5—C41.3 (5)Cd1—O5—C14—O42.7 (3)
Cd1—N1—C5—C4179.4 (2)Cd1—O5—C14—C15175.8 (3)
C3—C4—C5—N11.6 (5)Cd1—O4—C14—O52.8 (3)
C6—C4—C5—N1175.7 (3)Cd1—O4—C14—C15175.8 (3)
C3—C4—C6—O1156.8 (4)O3W—Cd1—C14—O519.8 (2)
C5—C4—C6—O120.3 (5)O4—Cd1—C14—O5177.3 (3)
C3—C4—C6—C921.1 (5)N2i—Cd1—C14—O5108.46 (18)
C5—C4—C6—C9161.8 (3)N1—Cd1—C14—O571.88 (18)
C11—N2—C7—C81.5 (5)O3—Cd1—C14—O5153.9 (3)
Cd1ii—N2—C7—C8170.5 (3)O2—Cd1—C14—O5154.70 (17)
N2—C7—C8—C91.3 (5)O3W—Cd1—C14—O4162.90 (17)
C7—C8—C9—C103.2 (5)N2i—Cd1—C14—O474.26 (19)
C7—C8—C9—C6176.7 (3)N1—Cd1—C14—O4105.40 (19)
O1—C6—C9—C833.5 (5)O5—Cd1—C14—O4177.3 (3)
C4—C6—C9—C8144.4 (3)O3—Cd1—C14—O423.4 (4)
O1—C6—C9—C10146.6 (4)O2—Cd1—C14—O422.6 (2)
C4—C6—C9—C1035.5 (5)O3W—Cd1—C14—C1589 (4)
C8—C9—C10—C112.5 (5)O4—Cd1—C14—C1574 (4)
C6—C9—C10—C11177.4 (3)N2i—Cd1—C14—C151 (4)
C7—N2—C11—C102.2 (5)N1—Cd1—C14—C15179 (100)
Cd1ii—N2—C11—C10169.5 (3)O5—Cd1—C14—C15109 (4)
C9—C10—C11—N20.3 (5)O3—Cd1—C14—C1597 (4)
O3W—Cd1—O5—C14161.18 (19)O2—Cd1—C14—C1596 (4)
O4—Cd1—O5—C141.54 (17)Cd1—O2—C12—O33.8 (3)
N2i—Cd1—O5—C1476.13 (19)Cd1—O2—C12—C13175.3 (3)
N1—Cd1—O5—C14105.42 (18)Cd1—O3—C12—O23.8 (3)
O3—Cd1—O5—C14156.8 (2)Cd1—O3—C12—C13175.3 (3)
O2—Cd1—O5—C1434.7 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O40.892.062.773 (2)136
O1W—H1WB···O2w0.892.002.834 (3)155
O2W—H2WA···O20.891.932.811 (4)173
O2W—H2WB···O1wiii0.891.952.803 (2)162
O3W—H3WA···O5iv0.891.802.679 (2)172
O3W—H3WB···O3v0.891.812.693 (3)170
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+2; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cd(C2H3O2)2(C11H8N2O)(H2O)]·2H2O
Mr468.73
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.545 (2), 10.699 (3), 11.215 (3)
α, β, γ (°)76.903 (5), 87.833 (5), 77.160 (5)
V3)973.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.38 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.840, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6828, 4747, 4041
Rint0.023
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.05
No. of reflections4747
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.33

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O40.892.062.773 (2)136
O1W—H1WB···O2w0.892.002.834 (3)155
O2W—H2WA···O20.891.932.811 (4)173
O2W—H2WB···O1wi0.891.952.803 (2)162
O3W—H3WA···O5ii0.891.802.679 (2)172
O3W—H3WB···O3iii0.891.812.693 (3)170
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2.
 

Acknowledgements

The authors are grateful to the State Key Laboratory of Structural Chemistry in China (ref. No. 20110001) and the Natural Science Foundation of Beijing Municipality (grant No. 2122011) for financial support.

References

First citationBoudalis, A. K., Dahan, F., Bousseksou, A., Tuchagues, J. P. & Perlepes, J. P. (2003). Dalton Trans. pp. 3411–3418.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. D., Du, M. & Mak, T. C. W. (2005). Chem. Commun. pp. 4117–4119.  Google Scholar
First citationChen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766–768.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X. D. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 393–396.  Web of Science CSD CrossRef Google Scholar
First citationChen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518–6528.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFamum, G. A., Montney, M. R., Supkowski, R. M. & LaDuca, R. L. (2009). Z. Anorg. Allg. Chem. 635, 1549–1550.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Zhao, X.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 2137–2145.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, B., Cheng, P., Chen, X., Cheng, C., Shi, W., Liao, D. Z., Yan, S. P. & Jiang, Z. (2004). J. Am. Chem. Soc. 126, 3012–3013.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds