metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{5,10,15,20-Tetra­kis[4-(hex­yl­oxy)phen­yl]porphyrinato}nickel(II)

aDepartment of Organic Chemistry, the College of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China, and bCollege of Chemistry and Environmental Engineering, Dongguan University of Technology, Guangdong 523808, People's Republic of China
*Correspondence e-mail: zhaohbhanlf@163.com

(Received 28 April 2012; accepted 16 May 2012; online 26 May 2012)

The mol­ecule of the title compound, [Ni(C68H76N4O4)], is located on a crystallographic inversion center. The Ni—N distances within the square-shaped coordination environment are 1.951 (2) and 1.954 (2) Å. Three terminal C atoms in one of the hexyl groups are disordered over two sets of sites, with site-occupancy factors of 0.615 (13) and 0.385 (13).

Related literature

For related structures, see: Scheidt (1977[Scheidt, W. R. (1977). Acc. Chem. Res. 10, 339-345.]); Maclean et al. (1996[Maclean, A. L., Foran, G. J., Kennedy, B. J., Turner, P. & Hambley, T. E. (1996). Aust. J. Chem. 49, 1273-1278.]); Jentzen et al. (1996[Jentzen, W., Turowska-Tyrk, I., Scheidt, W. R. & Shelnutt, J. A. (1996). Inorg. Chem. 35, 3559-3567.]); Chen et al. (2010[Chen, L., Zhao, H.-B., Xie, Y.-J., Yang, D.-L. & Wang, B.-Y. (2010). Acta Cryst. E66, m1455.]). For potential applications of porphyrins and metalloporphyrins in liquid crystals, prototypical multistate counters and artificial light-harvesting antennas, see: Castella et al. (2002[Castella, M., López-Calahorra, F., Velasco, D. & Finkelmann, H. (2002). Chem. Commun. pp. 2348-2349.]); Schweikart et al. (2002[Schweikart, K.-H., Malinovskii, V. L., Diers, J. R., Yasseri, A. A., Bocian, D. F., Kuhr, W. G. & Lindsey, J. S. (2002). J. Mater. Chem. 12, 808-828.]); Imahori (2004[Imahori, I. (2004). J. Phys. Chem. B, 108, 6130-6143.]). For their applications in dye-sensitised solar cells, see: Barea et al. (2011[Barea, E. M., Gónzalez-Pedro, V., Ripollés-Sanchis, T., Wu, H.-P., Li, L.-L., Yeh, C.-Y., Diau, E. W.-G. & Bisquert, J. (2011). J. Phys. Chem. C, 115, 10898-10902.]); Yella et al. (2011[Yella, A., Lee, H.-W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., Diau, E. W.-G., Yeh, C.-Y., Zakeeruddin, S. M. & Grätzel, M. (2011). Science, 334, 629-634.]) and for their applications in enzyme mimics, see: Anderson & Sanders (1995[Anderson, H. L. & Sanders, J. K. M. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2223-2229.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C68H76N4O4)]

  • Mr = 1072.04

  • Orthorhombic, P b c n

  • a = 18.7735 (10) Å

  • b = 10.8439 (6) Å

  • c = 28.7173 (16) Å

  • V = 5846.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 185 K

  • 0.27 × 0.19 × 0.10 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.904, Tmax = 0.963

  • 30888 measured reflections

  • 5173 independent reflections

  • 3950 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.156

  • S = 1.03

  • 5173 reflections

  • 380 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Porphyrins and metalloporphyrins are researched in many aspects, e.g. as liquid crystals (Castella et al., 2002), prototypical multistate counters (Schweikart et al., 2002), artificial light-harvesting antennas (Imahori,2004), dye-sensitized solar cells (Barea et al.,2011; Yella et al., 2011) or enzyme mimics (Anderson et al., 1995).

The porphyrin moiety is essentially planar, the macrocyclic core is planar with a mean deviation of 0.0244 Å. The four-coordinate Ni ion is located on the inversion center with Ni–N distances of 1.950 (3) and 1.954 (2) Å. These bond lengths are in agreement with those found in other nickel porphyrin compounds (Scheidt, 1977; Maclean et al., 1996; Jentzen et al., 1996; Chen et al., 2010.).

Three terminal C atoms (C32, C33 & C34) in one of the hexyl group are disordered over two positions with site occupancy factors of 0.615 (13) and 0.385 (13).

Related literature top

For related structures, see: Scheidt (1977); Maclean et al. (1996); Jentzen et al.(1996); Chen et al. (2010). For potential applications of porphyrins and metalloporphyrins in liquid crystals, prototypical multistate counters and artificial light-harvesting antennas, see: Castella et al. (2002); Schweikart et al. (2002); Imahori (2004). For their applications in dye-sensitised solar cells, see: Barea et al. (2011); Yella et al. (2011) and for their applications in enzyme mimics, see: Anderson & Sanders (1995).

Experimental top

0.04 mmol meso-tetrakis[p-(hexyloxy)phenyl] porphyrin and 0.40 mmol Ni(CH3COO)2.4H2O were dissolved in 20 ml chloroform, refluxed for 8 h, and the solvent was removed by a rotary evaporator, the residue was purified by column chromatography with chloroform, then crystallized by methanol and chloroform, and a purple solid was obtained (yield = 68%). Single crystals were recrystallization from a dichloromethane solution at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 (aromatic), 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). Three terminal C atoms (C32, C33 & C34) in the hexyl group are disordered over two positions. The occupancy factors were refined to a ratio of 0.615 (13):0.385 (13). The C—C bonds were restrained to 1.52 (1)Å and 1-3 distances to 2.48 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The minor occupied atoms of the disordered group are not shown. Symmetry code: (i) -x, 1 - y, -z.
{5,10,15,20-Tetrakis[4-(hexyloxy)phenyl]porphyrinato}nickel(II) top
Crystal data top
[Ni(C68H76N4O4)]Dx = 1.218 Mg m3
Mr = 1072.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 7739 reflections
a = 18.7735 (10) Åθ = 2.3–25.0°
b = 10.8439 (6) ŵ = 0.38 mm1
c = 28.7173 (16) ÅT = 185 K
V = 5846.2 (6) Å3Block, purple
Z = 40.27 × 0.19 × 0.10 mm
F(000) = 2288
Data collection top
Bruker APEX CCD
diffractometer
5173 independent reflections
Radiation source: fine-focus sealed tube3950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2211
Tmin = 0.904, Tmax = 0.963k = 1212
30888 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0695P)2 + 7.6994P]
where P = (Fo2 + 2Fc2)/3
5173 reflections(Δ/σ)max = 0.005
380 parametersΔρmax = 0.92 e Å3
10 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C68H76N4O4)]V = 5846.2 (6) Å3
Mr = 1072.04Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 18.7735 (10) ŵ = 0.38 mm1
b = 10.8439 (6) ÅT = 185 K
c = 28.7173 (16) Å0.27 × 0.19 × 0.10 mm
Data collection top
Bruker APEX CCD
diffractometer
5173 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3950 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.963Rint = 0.031
30888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05610 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.03Δρmax = 0.92 e Å3
5173 reflectionsΔρmin = 0.32 e Å3
380 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.50000.00000.03368 (17)
N10.05923 (12)0.4241 (2)0.04806 (8)0.0365 (6)
N20.08523 (12)0.4574 (2)0.03539 (8)0.0360 (5)
O10.47501 (10)0.4148 (2)0.05027 (8)0.0470 (6)
O20.1075 (2)0.0150 (3)0.24746 (10)0.0912 (11)
C10.17914 (15)0.4636 (3)0.01680 (11)0.0383 (7)
C20.13284 (15)0.4180 (3)0.04994 (10)0.0389 (7)
C30.15575 (16)0.3543 (3)0.09105 (10)0.0433 (7)
H30.20360.34020.10040.052*
C40.09688 (16)0.3184 (3)0.11395 (11)0.0449 (8)
H40.09520.27280.14220.054*
C50.03718 (15)0.3619 (3)0.08767 (10)0.0389 (7)
C60.03289 (16)0.3440 (3)0.10139 (10)0.0402 (7)
C70.08952 (15)0.3932 (3)0.07679 (10)0.0400 (7)
C80.16234 (16)0.3787 (3)0.09132 (11)0.0466 (8)
H80.17870.33830.11860.056*
C90.20280 (16)0.4336 (3)0.05864 (11)0.0458 (8)
H90.25330.44010.05880.055*
C100.15578 (15)0.4803 (3)0.02365 (11)0.0375 (7)
C110.25789 (15)0.4496 (3)0.02455 (10)0.0395 (7)
C120.29479 (16)0.5322 (3)0.05231 (11)0.0442 (8)
H120.27000.59870.06650.053*
C130.36741 (16)0.5192 (3)0.05977 (11)0.0442 (8)
H130.39200.57680.07880.053*
C140.40400 (15)0.4222 (3)0.03951 (10)0.0397 (7)
C150.36835 (16)0.3412 (3)0.01064 (12)0.0498 (8)
H150.39340.27630.00440.060*
C160.29529 (17)0.3554 (3)0.00380 (12)0.0502 (8)
H160.27080.29870.01570.060*
C170.51606 (16)0.3211 (3)0.02732 (12)0.0483 (8)
H17A0.52120.34100.00620.058*
H17B0.49190.24020.03010.058*
C180.58842 (15)0.3160 (3)0.05030 (11)0.0478 (8)
H18A0.60740.40080.05320.057*
H18B0.62140.26850.03030.057*
C190.58589 (16)0.2569 (3)0.09827 (12)0.0506 (8)
H19A0.55240.30410.11800.061*
H19B0.56690.17210.09520.061*
C200.65764 (17)0.2511 (4)0.12263 (12)0.0565 (9)
H20A0.69210.20870.10200.068*
H20B0.67510.33620.12770.068*
C210.6552 (2)0.1846 (5)0.16901 (15)0.0810 (13)
H21A0.63630.10040.16410.097*
H21B0.62200.22860.19000.097*
C220.7278 (3)0.1760 (7)0.1922 (2)0.143 (3)
H22A0.76170.13720.17080.215*
H22B0.72400.12630.22060.215*
H22C0.74450.25900.20020.215*
C230.04850 (16)0.2638 (3)0.14258 (11)0.0470 (8)
C240.06468 (19)0.3105 (4)0.18589 (12)0.0599 (10)
H240.06340.39700.19110.072*
C250.08340 (19)0.2286 (5)0.22295 (12)0.0676 (12)
H250.09390.25950.25310.081*
C260.0859 (2)0.1039 (4)0.21393 (15)0.0678 (11)
C270.0687 (2)0.0577 (4)0.17204 (15)0.0728 (11)
H270.06940.02890.16700.087*
C280.05038 (19)0.1361 (4)0.13678 (14)0.0616 (10)
H280.03850.10240.10720.074*
C290.1321 (3)0.0598 (5)0.28906 (16)0.1011 (17)
H29A0.16920.12310.28380.121*
H29B0.09280.09720.30710.121*
C300.1638 (3)0.0529 (6)0.31558 (17)0.1079 (19)
H30A0.18540.02290.34490.129*
H30B0.20260.08840.29640.129*
C310.1156 (4)0.1477 (5)0.3265 (2)0.143 (3)
H31A0.07930.11650.34860.172*0.615 (13)
H31B0.09090.17520.29790.172*0.615 (13)
H31C0.07580.10190.34110.172*0.385 (13)
H31D0.09750.17200.29540.172*0.385 (13)
C32A0.1552 (5)0.2553 (7)0.3481 (3)0.090 (3)0.615 (13)
H32C0.17380.23150.37910.109*0.615 (13)
H32D0.19600.27880.32820.109*0.615 (13)
C33A0.1051 (5)0.3617 (8)0.3529 (4)0.105 (4)0.615 (13)
H33A0.06250.33500.37050.126*0.615 (13)
H33B0.12860.42830.37080.126*0.615 (13)
C34A0.0823 (12)0.4111 (15)0.3060 (6)0.189 (12)0.615 (13)
H34A0.12330.44890.29040.284*0.615 (13)
H34B0.04490.47310.31030.284*0.615 (13)
H34C0.06400.34340.28690.284*0.615 (13)
C32B0.1148 (13)0.2696 (12)0.3530 (7)0.201 (16)0.385 (13)
H32E0.06530.30000.35570.241*0.385 (13)
H32F0.13370.25670.38480.241*0.385 (13)
C33B0.1599 (8)0.3646 (10)0.3279 (6)0.111 (7)0.385 (13)
H33C0.19480.32270.30750.133*0.385 (13)
H33D0.18640.41500.35080.133*0.385 (13)
C34B0.1117 (18)0.447 (2)0.2988 (8)0.156 (14)0.385 (13)
H34D0.09000.39870.27370.233*0.385 (13)
H34E0.13980.51440.28530.233*0.385 (13)
H34F0.07410.48180.31860.233*0.385 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0224 (3)0.0412 (3)0.0374 (3)0.0014 (2)0.0036 (2)0.0020 (2)
N10.0252 (12)0.0438 (14)0.0405 (13)0.0027 (10)0.0047 (10)0.0028 (11)
N20.0257 (12)0.0418 (13)0.0406 (13)0.0017 (10)0.0042 (10)0.0026 (11)
O10.0249 (10)0.0562 (14)0.0599 (13)0.0074 (10)0.0073 (10)0.0135 (11)
O20.114 (3)0.089 (2)0.0700 (19)0.023 (2)0.0205 (17)0.0054 (17)
C10.0277 (15)0.0418 (16)0.0455 (16)0.0025 (12)0.0053 (13)0.0065 (14)
C20.0281 (15)0.0448 (17)0.0439 (16)0.0041 (13)0.0045 (13)0.0051 (14)
C30.0299 (16)0.0527 (19)0.0473 (17)0.0071 (14)0.0075 (13)0.0021 (15)
C40.0359 (17)0.0529 (19)0.0459 (17)0.0058 (14)0.0061 (14)0.0045 (15)
C50.0333 (16)0.0427 (17)0.0408 (16)0.0022 (13)0.0051 (13)0.0021 (13)
C60.0340 (16)0.0445 (17)0.0422 (16)0.0006 (13)0.0028 (13)0.0018 (14)
C70.0309 (15)0.0451 (17)0.0439 (16)0.0003 (13)0.0004 (13)0.0009 (14)
C80.0309 (16)0.062 (2)0.0471 (18)0.0005 (15)0.0022 (14)0.0050 (16)
C90.0257 (15)0.060 (2)0.0517 (18)0.0008 (14)0.0001 (14)0.0008 (16)
C100.0280 (14)0.0392 (16)0.0453 (17)0.0004 (12)0.0016 (13)0.0038 (13)
C110.0274 (15)0.0486 (17)0.0424 (16)0.0019 (13)0.0026 (13)0.0016 (14)
C120.0286 (15)0.0517 (19)0.0524 (18)0.0080 (13)0.0030 (14)0.0082 (15)
C130.0321 (16)0.0498 (19)0.0508 (18)0.0014 (13)0.0082 (14)0.0121 (15)
C140.0243 (14)0.0501 (18)0.0447 (16)0.0041 (13)0.0037 (12)0.0008 (14)
C150.0319 (17)0.057 (2)0.061 (2)0.0085 (15)0.0066 (14)0.0185 (17)
C160.0334 (17)0.056 (2)0.061 (2)0.0039 (15)0.0116 (15)0.0188 (17)
C170.0322 (17)0.059 (2)0.0535 (19)0.0081 (15)0.0008 (14)0.0086 (16)
C180.0274 (15)0.061 (2)0.0554 (19)0.0092 (14)0.0006 (14)0.0037 (16)
C190.0324 (17)0.060 (2)0.059 (2)0.0016 (15)0.0011 (15)0.0034 (17)
C200.0341 (18)0.078 (3)0.058 (2)0.0042 (17)0.0023 (15)0.0047 (18)
C210.053 (2)0.120 (4)0.070 (3)0.001 (2)0.007 (2)0.027 (3)
C220.078 (4)0.257 (9)0.094 (4)0.002 (5)0.025 (3)0.072 (5)
C230.0287 (16)0.068 (2)0.0445 (17)0.0011 (15)0.0028 (13)0.0063 (16)
C240.050 (2)0.081 (3)0.048 (2)0.0041 (19)0.0055 (16)0.0026 (19)
C250.046 (2)0.119 (4)0.0381 (18)0.004 (2)0.0017 (16)0.006 (2)
C260.063 (3)0.068 (3)0.073 (3)0.008 (2)0.003 (2)0.013 (2)
C270.077 (3)0.073 (3)0.068 (3)0.010 (2)0.017 (2)0.006 (2)
C280.052 (2)0.069 (3)0.065 (2)0.0036 (19)0.0091 (18)0.011 (2)
C290.114 (4)0.127 (5)0.062 (3)0.010 (4)0.013 (3)0.023 (3)
C300.136 (5)0.125 (5)0.062 (3)0.029 (4)0.026 (3)0.007 (3)
C310.220 (8)0.111 (5)0.098 (4)0.031 (6)0.063 (5)0.008 (4)
C32A0.107 (8)0.085 (6)0.079 (6)0.030 (6)0.038 (5)0.005 (5)
C33A0.090 (7)0.099 (7)0.125 (8)0.003 (6)0.001 (6)0.052 (7)
C34A0.22 (2)0.085 (10)0.27 (2)0.070 (14)0.137 (18)0.050 (11)
C32B0.19 (3)0.14 (2)0.27 (3)0.03 (2)0.17 (2)0.04 (2)
C33B0.113 (13)0.107 (14)0.112 (12)0.014 (10)0.041 (10)0.044 (11)
C34B0.27 (4)0.108 (18)0.094 (13)0.04 (2)0.039 (18)0.011 (11)
Geometric parameters (Å, º) top
Ni1—N2i1.951 (2)C20—H20A0.9900
Ni1—N21.951 (2)C20—H20B0.9900
Ni1—N1i1.954 (2)C21—C221.520 (6)
Ni1—N11.954 (2)C21—H21A0.9900
N1—C21.385 (4)C21—H21B0.9900
N1—C51.386 (4)C22—H22A0.9800
N2—C71.380 (4)C22—H22B0.9800
N2—C101.389 (4)C22—H22C0.9800
O1—C141.371 (3)C23—C241.377 (5)
O1—C171.436 (4)C23—C281.396 (5)
O2—C291.370 (5)C24—C251.431 (5)
O2—C261.421 (5)C24—H240.9500
C1—C21.381 (4)C25—C261.378 (6)
C1—C10i1.383 (4)C25—H250.9500
C1—C111.503 (4)C26—C271.342 (6)
C2—C31.434 (4)C27—C281.367 (5)
C3—C41.344 (4)C27—H270.9500
C3—H30.9500C28—H280.9500
C4—C51.431 (4)C29—C301.558 (7)
C4—H40.9500C29—H29A0.9900
C5—C61.387 (4)C29—H29B0.9900
C6—C71.383 (4)C30—C311.405 (8)
C6—C231.497 (4)C30—H30A0.9900
C7—C81.438 (4)C30—H30B0.9900
C8—C91.346 (4)C31—C32A1.517 (7)
C8—H80.9500C31—C32B1.526 (10)
C9—C101.430 (4)C31—H31A0.9900
C9—H90.9500C31—H31B0.9900
C10—C1i1.383 (4)C31—H31C0.9900
C11—C161.375 (4)C31—H31D0.9900
C11—C121.385 (4)C32A—C33A1.496 (8)
C12—C131.387 (4)C32A—H32C0.9900
C12—H120.9500C32A—H32D0.9900
C13—C141.384 (4)C33A—C34A1.510 (9)
C13—H130.9500C33A—H33A0.9900
C14—C151.381 (4)C33A—H33B0.9900
C15—C161.394 (4)C34A—H34A0.9800
C15—H150.9500C34A—H34B0.9800
C16—H160.9500C34A—H34C0.9800
C17—C181.511 (4)C32B—C33B1.516 (9)
C17—H17A0.9900C32B—H32E0.9900
C17—H17B0.9900C32B—H32F0.9900
C18—C191.520 (5)C33B—C34B1.524 (10)
C18—H18A0.9900C33B—H33C0.9900
C18—H18B0.9900C33B—H33D0.9900
C19—C201.519 (4)C34B—H34D0.9800
C19—H19A0.9900C34B—H34E0.9800
C19—H19B0.9900C34B—H34F0.9800
C20—C211.515 (5)
N2i—Ni1—N2180.0C20—C21—C22112.8 (4)
N2i—Ni1—N1i89.94 (10)C20—C21—H21A109.0
N2—Ni1—N1i90.06 (10)C22—C21—H21A109.0
N2i—Ni1—N190.06 (10)C20—C21—H21B109.0
N2—Ni1—N189.94 (10)C22—C21—H21B109.0
N1i—Ni1—N1180.0H21A—C21—H21B107.8
C2—N1—C5104.0 (2)C21—C22—H22A109.5
C2—N1—Ni1128.0 (2)C21—C22—H22B109.5
C5—N1—Ni1127.94 (19)H22A—C22—H22B109.5
C7—N2—C10104.1 (2)C21—C22—H22C109.5
C7—N2—Ni1128.03 (19)H22A—C22—H22C109.5
C10—N2—Ni1127.8 (2)H22B—C22—H22C109.5
C14—O1—C17117.4 (2)C24—C23—C28117.9 (3)
C29—O2—C26116.5 (4)C24—C23—C6122.9 (3)
C2—C1—C10i122.5 (3)C28—C23—C6119.1 (3)
C2—C1—C11118.8 (3)C23—C24—C25119.9 (4)
C10i—C1—C11118.7 (3)C23—C24—H24120.1
C1—C2—N1125.7 (3)C25—C24—H24120.1
C1—C2—C3123.5 (3)C26—C25—C24118.6 (4)
N1—C2—C3110.8 (3)C26—C25—H25120.7
C4—C3—C2107.2 (3)C24—C25—H25120.7
C4—C3—H3126.4C27—C26—C25121.8 (4)
C2—C3—H3126.4C27—C26—O2115.0 (4)
C3—C4—C5106.9 (3)C25—C26—O2123.2 (4)
C3—C4—H4126.6C26—C27—C28119.5 (4)
C5—C4—H4126.6C26—C27—H27120.3
N1—C5—C6125.8 (3)C28—C27—H27120.3
N1—C5—C4111.1 (3)C27—C28—C23122.4 (4)
C6—C5—C4123.2 (3)C27—C28—H28118.8
C7—C6—C5122.0 (3)C23—C28—H28118.8
C7—C6—C23118.5 (3)O2—C29—C30106.1 (4)
C5—C6—C23119.4 (3)O2—C29—H29A110.5
N2—C7—C6126.1 (3)C30—C29—H29A110.5
N2—C7—C8111.1 (3)O2—C29—H29B110.5
C6—C7—C8122.7 (3)C30—C29—H29B110.5
C9—C8—C7106.6 (3)H29A—C29—H29B108.7
C9—C8—H8126.7C31—C30—C29115.8 (5)
C7—C8—H8126.7C31—C30—H30A108.3
C8—C9—C10107.3 (3)C29—C30—H30A108.3
C8—C9—H9126.3C31—C30—H30B108.3
C10—C9—H9126.3C29—C30—H30B108.3
C1i—C10—N2125.8 (3)H30A—C30—H30B107.4
C1i—C10—C9123.4 (3)C30—C31—C32A109.7 (7)
N2—C10—C9110.8 (3)C30—C31—C32B138.6 (12)
C16—C11—C12118.3 (3)C30—C31—H31A109.7
C16—C11—C1120.9 (3)C32A—C31—H31A109.7
C12—C11—C1120.8 (3)C30—C31—H31B109.7
C11—C12—C13121.0 (3)C32A—C31—H31B109.7
C11—C12—H12119.5H31A—C31—H31B108.2
C13—C12—H12119.5C30—C31—H31C102.4
C14—C13—C12120.0 (3)C32B—C31—H31C102.4
C14—C13—H13120.0C30—C31—H31D102.4
C12—C13—H13120.0C32A—C31—H31D109.4
O1—C14—C15124.7 (3)C32B—C31—H31D102.4
O1—C14—C13115.6 (3)H31C—C31—H31D104.9
C15—C14—C13119.7 (3)C33A—C32A—C31108.8 (6)
C14—C15—C16119.4 (3)C33A—C32A—H32C109.9
C14—C15—H15120.3C31—C32A—H32C109.9
C16—C15—H15120.3C33A—C32A—H32D109.9
C11—C16—C15121.6 (3)C31—C32A—H32D109.9
C11—C16—H16119.2H32C—C32A—H32D108.3
C15—C16—H16119.2C34A—C33A—C32A111.8 (7)
O1—C17—C18107.9 (3)C34A—C33A—H33A109.3
O1—C17—H17A110.1C32A—C33A—H33A109.3
C18—C17—H17A110.1C34A—C33A—H33B109.3
O1—C17—H17B110.1C32A—C33A—H33B109.3
C18—C17—H17B110.1H33A—C33A—H33B107.9
H17A—C17—H17B108.4C33B—C32B—C31110.3 (8)
C17—C18—C19112.5 (3)C33B—C32B—H32E109.6
C17—C18—H18A109.1C31—C32B—H32E109.6
C19—C18—H18A109.1C33B—C32B—H32F109.6
C17—C18—H18B109.1C31—C32B—H32F109.6
C19—C18—H18B109.1H32E—C32B—H32F108.1
H18A—C18—H18B107.8C32B—C33B—C34B109.2 (9)
C20—C19—C18114.0 (3)C32B—C33B—H33C109.8
C20—C19—H19A108.7C34B—C33B—H33C109.8
C18—C19—H19A108.7C32B—C33B—H33D109.8
C20—C19—H19B108.7C34B—C33B—H33D109.8
C18—C19—H19B108.7H33C—C33B—H33D108.3
H19A—C19—H19B107.6C33B—C34B—H34D109.5
C21—C20—C19113.4 (3)C33B—C34B—H34E109.5
C21—C20—H20A108.9H34D—C34B—H34E109.5
C19—C20—H20A108.9C33B—C34B—H34F109.5
C21—C20—H20B108.9H34D—C34B—H34F109.5
C19—C20—H20B108.9H34E—C34B—H34F109.5
H20A—C20—H20B107.7
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C68H76N4O4)]
Mr1072.04
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)185
a, b, c (Å)18.7735 (10), 10.8439 (6), 28.7173 (16)
V3)5846.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.27 × 0.19 × 0.10
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.904, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
30888, 5173, 3950
Rint0.031
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.156, 1.03
No. of reflections5173
No. of parameters380
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.32

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Changchun, China.

References

First citationAnderson, H. L. & Sanders, J. K. M. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2223–2229.  CrossRef Web of Science Google Scholar
First citationBarea, E. M., Gónzalez-Pedro, V., Ripollés-Sanchis, T., Wu, H.-P., Li, L.-L., Yeh, C.-Y., Diau, E. W.-G. & Bisquert, J. (2011). J. Phys. Chem. C, 115, 10898–10902.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationCastella, M., López-Calahorra, F., Velasco, D. & Finkelmann, H. (2002). Chem. Commun. pp. 2348–2349.  Web of Science CrossRef Google Scholar
First citationChen, L., Zhao, H.-B., Xie, Y.-J., Yang, D.-L. & Wang, B.-Y. (2010). Acta Cryst. E66, m1455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationImahori, I. (2004). J. Phys. Chem. B, 108, 6130–6143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJentzen, W., Turowska-Tyrk, I., Scheidt, W. R. & Shelnutt, J. A. (1996). Inorg. Chem. 35, 3559–3567.  CSD CrossRef CAS Web of Science Google Scholar
First citationMaclean, A. L., Foran, G. J., Kennedy, B. J., Turner, P. & Hambley, T. E. (1996). Aust. J. Chem. 49, 1273–1278.  CSD CrossRef CAS Web of Science Google Scholar
First citationScheidt, W. R. (1977). Acc. Chem. Res. 10, 339–345.  CrossRef CAS Web of Science Google Scholar
First citationSchweikart, K.-H., Malinovskii, V. L., Diers, J. R., Yasseri, A. A., Bocian, D. F., Kuhr, W. G. & Lindsey, J. S. (2002). J. Mater. Chem. 12, 808–828.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYella, A., Lee, H.-W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., Diau, E. W.-G., Yeh, C.-Y., Zakeeruddin, S. M. & Grätzel, M. (2011). Science, 334, 629–634.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds