organic compounds
Decachlorohexa-1,5-diene
aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de
The title compound, C6Cl10, cystallizes in a nearly C2-symmetrical gauche conformation. Both trichlorovinyl groups are nearly planar [Cl—C—C—Cl torsion angles = −178.47 (12) and −179.93 (11)°] and the lengths of their C—Cl bonds increase from the terminal trans and cis C—Cl bonds to the internal bonds. The Cl—C—Cl bond angles of the terminal dichloromethylene units are compressed to 111.75 (11) and 111.40 (11)°.
Related literature
For the synthesis of perchloroalkenes, see: Prins (1949); Roedig et al. (1963). For structures of perchloroalkenes, see: Herbstein (1979); Rao & Livingston (1958); Hopf et al. (1991); Detert et al. (2009). For rearrangements of highly halogenated see: Maahs (1963); Herges et al. (2005). For recent reactions of perchloroalkenes, see: Schmidt et al. (2009); Rahimi & Schmidt (2010).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2011); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al. 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536812019769/bt5907sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812019769/bt5907Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812019769/bt5907Isup3.cml
1,5-Decachlorohexadiene: The diene was prepared from hexachloropropene with cuprous chloride as the coupling agent according the procedure given by Prins. (Prins, 1949) Single crystals were obtained by slow evaporation of a solution of perchlorohexadiene in dichloromethane/methanol.
Data collection: X-AREA (Stoe & Cie, 2011); cell
X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al. 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level. |
C6Cl10 | F(000) = 824 |
Mr = 426.56 | Dx = 2.136 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 28472 reflections |
a = 12.8936 (5) Å | θ = 2.6–32.4° |
b = 6.7051 (2) Å | µ = 2.07 mm−1 |
c = 15.3753 (5) Å | T = 193 K |
β = 93.858 (3)° | Block, colourless |
V = 1326.23 (8) Å3 | 0.15 × 0.15 × 0.15 mm |
Z = 4 |
Stoe IPDS 2T diffractometer | 3181 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2991 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Detector resolution: 6.67 pixels mm-1 | θmax = 28.0°, θmin = 3.0° |
rotation method scans | h = −17→17 |
Absorption correction: multi-scan (PLATON; Spek, 2009) | k = −8→8 |
Tmin = 0.747, Tmax = 0.747 | l = −20→19 |
18142 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.030 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0314P)2 + 1.2539P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3181 reflections | Δρmax = 0.94 e Å−3 |
145 parameters | Δρmin = −0.44 e Å−3 |
C6Cl10 | V = 1326.23 (8) Å3 |
Mr = 426.56 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.8936 (5) Å | µ = 2.07 mm−1 |
b = 6.7051 (2) Å | T = 193 K |
c = 15.3753 (5) Å | 0.15 × 0.15 × 0.15 mm |
β = 93.858 (3)° |
Stoe IPDS 2T diffractometer | 3181 independent reflections |
Absorption correction: multi-scan (PLATON; Spek, 2009) | 2991 reflections with I > 2σ(I) |
Tmin = 0.747, Tmax = 0.747 | Rint = 0.044 |
18142 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 145 parameters |
wR(F2) = 0.075 | 0 restraints |
S = 1.06 | Δρmax = 0.94 e Å−3 |
3181 reflections | Δρmin = −0.44 e Å−3 |
Experimental. 13C-NMR (75 MHz, CDCl3): δ = 94.5 (C-3,4), 128.1 (C-1,6), 131.2 (C-2,5) MS (FD): 426 (100%, Cl10 pattern) [M]+. C6Cl10 (426.596): calcd. C 16.89%; found C 17.06%. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.07308 (4) | 0.63553 (10) | 0.19647 (4) | 0.04455 (14) | |
Cl2 | 0.28741 (4) | 0.54432 (8) | 0.22272 (3) | 0.03407 (12) | |
Cl3 | 0.03427 (4) | 0.60643 (9) | 0.38657 (4) | 0.04477 (14) | |
Cl4 | 0.20468 (5) | 0.63372 (9) | 0.52864 (4) | 0.04909 (16) | |
Cl5 | 0.36486 (4) | 0.62962 (8) | 0.41150 (3) | 0.03657 (12) | |
Cl6 | 0.13705 (5) | 0.18663 (9) | 0.47450 (4) | 0.04778 (15) | |
Cl7 | 0.34462 (5) | 0.25344 (10) | 0.54017 (3) | 0.04564 (15) | |
Cl8 | 0.19658 (4) | 0.09671 (7) | 0.29308 (4) | 0.03836 (13) | |
Cl9 | 0.50500 (4) | 0.20720 (9) | 0.40404 (3) | 0.03898 (13) | |
Cl10 | 0.41762 (4) | 0.02630 (8) | 0.25017 (4) | 0.04048 (13) | |
C1 | 0.17431 (15) | 0.5804 (3) | 0.27135 (13) | 0.0302 (4) | |
C2 | 0.16004 (15) | 0.5674 (3) | 0.35642 (13) | 0.0290 (4) | |
C3 | 0.24229 (15) | 0.5212 (3) | 0.43068 (12) | 0.0287 (4) | |
C4 | 0.25883 (15) | 0.2894 (3) | 0.44660 (12) | 0.0294 (4) | |
C5 | 0.29541 (15) | 0.1796 (3) | 0.36660 (12) | 0.0281 (4) | |
C6 | 0.39289 (15) | 0.1447 (3) | 0.34565 (12) | 0.0289 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0363 (3) | 0.0573 (3) | 0.0386 (3) | 0.0024 (2) | −0.0082 (2) | 0.0092 (2) |
Cl2 | 0.0338 (2) | 0.0402 (3) | 0.0291 (2) | 0.00294 (19) | 0.00900 (17) | 0.00380 (18) |
Cl3 | 0.0355 (3) | 0.0501 (3) | 0.0508 (3) | 0.0077 (2) | 0.0182 (2) | 0.0015 (2) |
Cl4 | 0.0693 (4) | 0.0454 (3) | 0.0335 (3) | 0.0115 (3) | 0.0101 (2) | −0.0131 (2) |
Cl5 | 0.0408 (3) | 0.0329 (2) | 0.0352 (2) | −0.00885 (19) | −0.00350 (19) | 0.00085 (19) |
Cl6 | 0.0460 (3) | 0.0377 (3) | 0.0628 (4) | −0.0004 (2) | 0.0267 (3) | 0.0081 (3) |
Cl7 | 0.0566 (3) | 0.0565 (3) | 0.0241 (2) | 0.0145 (3) | 0.0046 (2) | 0.0129 (2) |
Cl8 | 0.0339 (2) | 0.0287 (2) | 0.0518 (3) | −0.00371 (18) | −0.0026 (2) | −0.0083 (2) |
Cl9 | 0.0299 (2) | 0.0521 (3) | 0.0345 (2) | 0.0026 (2) | −0.00126 (18) | 0.0047 (2) |
Cl10 | 0.0467 (3) | 0.0384 (3) | 0.0377 (3) | 0.0036 (2) | 0.0133 (2) | −0.0090 (2) |
C1 | 0.0304 (9) | 0.0270 (9) | 0.0333 (9) | 0.0010 (7) | 0.0030 (7) | 0.0006 (7) |
C2 | 0.0299 (9) | 0.0239 (8) | 0.0335 (9) | 0.0010 (7) | 0.0051 (7) | −0.0005 (7) |
C3 | 0.0372 (9) | 0.0256 (9) | 0.0235 (8) | 0.0017 (7) | 0.0031 (7) | −0.0025 (7) |
C4 | 0.0339 (9) | 0.0281 (9) | 0.0271 (8) | 0.0043 (7) | 0.0079 (7) | 0.0055 (7) |
C5 | 0.0347 (9) | 0.0214 (8) | 0.0284 (8) | 0.0004 (7) | 0.0037 (7) | 0.0014 (7) |
C6 | 0.0328 (9) | 0.0260 (9) | 0.0280 (8) | 0.0015 (7) | 0.0030 (7) | 0.0026 (7) |
Cl1—C1 | 1.721 (2) | Cl9—C6 | 1.702 (2) |
Cl2—C1 | 1.700 (2) | Cl10—C6 | 1.718 (2) |
Cl3—C2 | 1.736 (2) | C1—C2 | 1.336 (3) |
Cl4—C3 | 1.7806 (19) | C2—C3 | 1.536 (3) |
Cl5—C3 | 1.782 (2) | C3—C4 | 1.586 (3) |
Cl6—C4 | 1.793 (2) | C4—C5 | 1.535 (3) |
Cl7—C4 | 1.771 (2) | C5—C6 | 1.339 (3) |
Cl8—C5 | 1.737 (2) | ||
C2—C1—Cl2 | 126.87 (16) | C5—C4—C3 | 113.08 (15) |
C2—C1—Cl1 | 121.38 (16) | C5—C4—Cl7 | 112.13 (13) |
Cl2—C1—Cl1 | 111.75 (11) | C3—C4—Cl7 | 109.21 (14) |
C1—C2—C3 | 127.38 (18) | C5—C4—Cl6 | 109.18 (14) |
C1—C2—Cl3 | 116.37 (15) | C3—C4—Cl6 | 107.63 (13) |
C3—C2—Cl3 | 116.25 (14) | Cl7—C4—Cl6 | 105.21 (10) |
C2—C3—C4 | 113.02 (15) | C6—C5—C4 | 128.36 (18) |
C2—C3—Cl4 | 109.25 (13) | C6—C5—Cl8 | 116.56 (15) |
C4—C3—Cl4 | 109.03 (13) | C4—C5—Cl8 | 115.05 (14) |
C2—C3—Cl5 | 111.74 (13) | C5—C6—Cl9 | 127.43 (16) |
C4—C3—Cl5 | 108.28 (13) | C5—C6—Cl10 | 121.17 (16) |
Cl4—C3—Cl5 | 105.21 (10) | Cl9—C6—Cl10 | 111.40 (11) |
Cl2—C1—C2—C3 | 1.4 (3) | Cl5—C3—C4—Cl7 | 61.66 (14) |
Cl1—C1—C2—C3 | −179.52 (15) | C2—C3—C4—Cl6 | −60.28 (18) |
Cl2—C1—C2—Cl3 | −178.47 (12) | Cl4—C3—C4—Cl6 | 61.42 (15) |
Cl1—C1—C2—Cl3 | 0.7 (2) | Cl5—C3—C4—Cl6 | 175.38 (9) |
C1—C2—C3—C4 | −86.2 (2) | C3—C4—C5—C6 | 90.7 (2) |
Cl3—C2—C3—C4 | 93.61 (17) | Cl7—C4—C5—C6 | −33.3 (3) |
C1—C2—C3—Cl4 | 152.21 (18) | Cl6—C4—C5—C6 | −149.47 (18) |
Cl3—C2—C3—Cl4 | −27.96 (18) | C3—C4—C5—Cl8 | −87.37 (18) |
C1—C2—C3—Cl5 | 36.2 (3) | Cl7—C4—C5—Cl8 | 148.61 (11) |
Cl3—C2—C3—Cl5 | −143.95 (11) | Cl6—C4—C5—Cl8 | 32.41 (17) |
C2—C3—C4—C5 | 60.4 (2) | C4—C5—C6—Cl9 | 2.0 (3) |
Cl4—C3—C4—C5 | −177.90 (14) | Cl8—C5—C6—Cl9 | −179.93 (11) |
Cl5—C3—C4—C5 | −63.94 (18) | C4—C5—C6—Cl10 | −177.43 (15) |
C2—C3—C4—Cl7 | −174.00 (13) | Cl8—C5—C6—Cl10 | 0.7 (2) |
Cl4—C3—C4—Cl7 | −52.30 (16) |
Experimental details
Crystal data | |
Chemical formula | C6Cl10 |
Mr | 426.56 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 12.8936 (5), 6.7051 (2), 15.3753 (5) |
β (°) | 93.858 (3) |
V (Å3) | 1326.23 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.07 |
Crystal size (mm) | 0.15 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Stoe IPDS 2T diffractometer |
Absorption correction | Multi-scan (PLATON; Spek, 2009) |
Tmin, Tmax | 0.747, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18142, 3181, 2991 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.075, 1.06 |
No. of reflections | 3181 |
No. of parameters | 145 |
Δρmax, Δρmin (e Å−3) | 0.94, −0.44 |
Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2011), SIR97 (Altomare et al. 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Acknowledgements
The authors are grateful to Dieter Lenoir for helpful discussions.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Detert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. pp. 1181–1190. Web of Science CSD CrossRef Google Scholar
Herbstein, F. H. (1979). Acta Cryst. B35, 1661–1670. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Herges, R., Papafilipopoulos, A., Hess, K., Lenoir, D., Chiappe, C. & Detert, H. (2005). Angew. Chem. Int. Ed. Engl. 44, 1412–1416. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hopf, H., Stamm, R. & Jones, P. G. (1991). Chem. Ber. 124, 1291–1294. CrossRef CAS Web of Science Google Scholar
Maahs, G. (1963). Angew. Chem. 75, 451–451. CrossRef CAS Web of Science Google Scholar
Prins, H. J. (1949). Recl Trav. Chim. Pays Bas, 68, 419–425. CrossRef CAS Google Scholar
Rahimi, A. & Schmidt, A. (2010). Synthesis, pp. 2621–2625. Google Scholar
Rao, C. N. R. & Livingston, R. (1958). Curr. Sci. 27, 330–331. CAS Google Scholar
Roedig, A., Bischoff, F., Heinrich, B. & Märkl, G. (1963). Justus Liebigs Ann. Chem. 670, 8–22. CrossRef CAS Google Scholar
Schmidt, A., Rahimi, A. & Gjikai, M. (2009). Synthesis, pp. 2371–2378. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the monoclinic crystal, decachlorohexadiene adopts a gauche conformation [C2—C3—C4—C5: 60.4 (2)°] with a non-perfect C2-symmetry. With torsion angles of -178.47 (12)° (Cl2—C1—C2—Cl3) and -179.93 (11)° (Cl8—C5—C6—Cl9) both trichorovinyl groups are nearly planar. The C—Cl bonds of these units are significantly different. The bond lengths C2—Cl3 [1.736 (2) Å] and C5—Cl8 [1.737 (2) Å] are sligthly longer than the corresponding bonds (1.731 Å) in trans-octachloro-1,3,5-hexatriene (Detert et al., 2009). The bonds to the cis-chlorine atoms are shorter: C1—Cl1: 1.721 (2) Å and C6—Cl10: 1.718 (2) Å and those to the trans-chlorine atoms are reduced to C1—Cl2: 1.700 (2) Å and C6—Cl9: 1.702 (2). The same bond length variations, but to a lower degree, were found in the triene. With 111.40 (11)° and 111.74 (11)° the bond angles of the terminal dichloromethylene units are smaller than in the reference compound (115.5°).