organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Deca­chloro­hexa-1,5-diene

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 30 April 2012; accepted 2 May 2012; online 12 May 2012)

The title compound, C6Cl10, cystallizes in a nearly C2-symmetrical gauche conformation. Both trichloro­vinyl groups are nearly planar [Cl—C—C—Cl torsion angles = −178.47 (12) and −179.93 (11)°] and the lengths of their C—Cl bonds increase from the terminal trans and cis C—Cl bonds to the inter­nal bonds. The Cl—C—Cl bond angles of the terminal dichloro­methyl­ene units are compressed to 111.75 (11) and 111.40 (11)°.

Related literature

For the synthesis of perchloro­alkenes, see: Prins (1949[Prins, H. J. (1949). Recl Trav. Chim. Pays Bas, 68, 419-425.]); Roedig et al. (1963[Roedig, A., Bischoff, F., Heinrich, B. & Märkl, G. (1963). Justus Liebigs Ann. Chem. 670, 8-22.]). For structures of perchloro­alkenes, see: Herbstein (1979[Herbstein, F. H. (1979). Acta Cryst. B35, 1661-1670.]); Rao & Livingston (1958[Rao, C. N. R. & Livingston, R. (1958). Curr. Sci. 27, 330-331.]); Hopf et al. (1991[Hopf, H., Stamm, R. & Jones, P. G. (1991). Chem. Ber. 124, 1291-1294.]); Detert et al. (2009[Detert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. pp. 1181-1190.]). For rearrangements of highly halogenated alkenes, see: Maahs (1963[Maahs, G. (1963). Angew. Chem. 75, 451-451.]); Herges et al. (2005[Herges, R., Papafilipopoulos, A., Hess, K., Lenoir, D., Chiappe, C. & Detert, H. (2005). Angew. Chem. Int. Ed. Engl. 44, 1412-1416.]). For recent reactions of perchloro­alkenes, see: Schmidt et al. (2009[Schmidt, A., Rahimi, A. & Gjikai, M. (2009). Synthesis, pp. 2371-2378.]); Rahimi & Schmidt (2010[Rahimi, A. & Schmidt, A. (2010). Synthesis, pp. 2621-2625.]).

[Scheme 1]

Experimental

Crystal data
  • C6Cl10

  • Mr = 426.56

  • Monoclinic, P 21 /c

  • a = 12.8936 (5) Å

  • b = 6.7051 (2) Å

  • c = 15.3753 (5) Å

  • β = 93.858 (3)°

  • V = 1326.23 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.07 mm−1

  • T = 193 K

  • 0.15 × 0.15 × 0.15 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: multi-scan (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.747, Tmax = 0.747

  • 18142 measured reflections

  • 3181 independent reflections

  • 2991 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.06

  • 3181 reflections

  • 145 parameters

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al. 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In the monoclinic crystal, decachlorohexadiene adopts a gauche conformation [C2—C3—C4—C5: 60.4 (2)°] with a non-perfect C2-symmetry. With torsion angles of -178.47 (12)° (Cl2—C1—C2—Cl3) and -179.93 (11)° (Cl8—C5—C6—Cl9) both trichorovinyl groups are nearly planar. The C—Cl bonds of these units are significantly different. The bond lengths C2—Cl3 [1.736 (2) Å] and C5—Cl8 [1.737 (2) Å] are sligthly longer than the corresponding bonds (1.731 Å) in trans-octachloro-1,3,5-hexatriene (Detert et al., 2009). The bonds to the cis-chlorine atoms are shorter: C1—Cl1: 1.721 (2) Å and C6—Cl10: 1.718 (2) Å and those to the trans-chlorine atoms are reduced to C1—Cl2: 1.700 (2) Å and C6—Cl9: 1.702 (2). The same bond length variations, but to a lower degree, were found in the triene. With 111.40 (11)° and 111.74 (11)° the bond angles of the terminal dichloromethylene units are smaller than in the reference compound (115.5°).

Related literature top

For the synthesis of perchloroalkenes, see: Prins (1949); Roedig et al. (1963). For structures of perchloroalkenes, see: Herbstein (1979); Rao & Livingston (1958); Hopf et al. (1991); Detert et al. (2009). For rearrangements of highly halogenated alkenes, see: Maahs (1963); Herges et al. (2005). For recent reactions of perchloroalkenes, see: Schmidt et al. (2009); Rahimi & Schmidt (2010).

Experimental top

1,5-Decachlorohexadiene: The diene was prepared from hexachloropropene with cuprous chloride as the coupling agent according the procedure given by Prins. (Prins, 1949) Single crystals were obtained by slow evaporation of a solution of perchlorohexadiene in dichloromethane/methanol.

Refinement top

All atoms were refined with anisotropic displacement parameters.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al. 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
Decachlorohexa-1,5-diene top
Crystal data top
C6Cl10F(000) = 824
Mr = 426.56Dx = 2.136 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 28472 reflections
a = 12.8936 (5) Åθ = 2.6–32.4°
b = 6.7051 (2) ŵ = 2.07 mm1
c = 15.3753 (5) ÅT = 193 K
β = 93.858 (3)°Block, colourless
V = 1326.23 (8) Å30.15 × 0.15 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
3181 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 6.67 pixels mm-1θmax = 28.0°, θmin = 3.0°
rotation method scansh = 1717
Absorption correction: multi-scan
(PLATON; Spek, 2009)
k = 88
Tmin = 0.747, Tmax = 0.747l = 2019
18142 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.030Secondary atom site location: difference Fourier map
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0314P)2 + 1.2539P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3181 reflectionsΔρmax = 0.94 e Å3
145 parametersΔρmin = 0.44 e Å3
Crystal data top
C6Cl10V = 1326.23 (8) Å3
Mr = 426.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8936 (5) ŵ = 2.07 mm1
b = 6.7051 (2) ÅT = 193 K
c = 15.3753 (5) Å0.15 × 0.15 × 0.15 mm
β = 93.858 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
3181 independent reflections
Absorption correction: multi-scan
(PLATON; Spek, 2009)
2991 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.747Rint = 0.044
18142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030145 parameters
wR(F2) = 0.0750 restraints
S = 1.06Δρmax = 0.94 e Å3
3181 reflectionsΔρmin = 0.44 e Å3
Special details top

Experimental. 13C-NMR (75 MHz, CDCl3): δ = 94.5 (C-3,4), 128.1 (C-1,6), 131.2 (C-2,5)

MS (FD): 426 (100%, Cl10 pattern) [M]+.

C6Cl10 (426.596): calcd. C 16.89%; found C 17.06%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07308 (4)0.63553 (10)0.19647 (4)0.04455 (14)
Cl20.28741 (4)0.54432 (8)0.22272 (3)0.03407 (12)
Cl30.03427 (4)0.60643 (9)0.38657 (4)0.04477 (14)
Cl40.20468 (5)0.63372 (9)0.52864 (4)0.04909 (16)
Cl50.36486 (4)0.62962 (8)0.41150 (3)0.03657 (12)
Cl60.13705 (5)0.18663 (9)0.47450 (4)0.04778 (15)
Cl70.34462 (5)0.25344 (10)0.54017 (3)0.04564 (15)
Cl80.19658 (4)0.09671 (7)0.29308 (4)0.03836 (13)
Cl90.50500 (4)0.20720 (9)0.40404 (3)0.03898 (13)
Cl100.41762 (4)0.02630 (8)0.25017 (4)0.04048 (13)
C10.17431 (15)0.5804 (3)0.27135 (13)0.0302 (4)
C20.16004 (15)0.5674 (3)0.35642 (13)0.0290 (4)
C30.24229 (15)0.5212 (3)0.43068 (12)0.0287 (4)
C40.25883 (15)0.2894 (3)0.44660 (12)0.0294 (4)
C50.29541 (15)0.1796 (3)0.36660 (12)0.0281 (4)
C60.39289 (15)0.1447 (3)0.34565 (12)0.0289 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0363 (3)0.0573 (3)0.0386 (3)0.0024 (2)0.0082 (2)0.0092 (2)
Cl20.0338 (2)0.0402 (3)0.0291 (2)0.00294 (19)0.00900 (17)0.00380 (18)
Cl30.0355 (3)0.0501 (3)0.0508 (3)0.0077 (2)0.0182 (2)0.0015 (2)
Cl40.0693 (4)0.0454 (3)0.0335 (3)0.0115 (3)0.0101 (2)0.0131 (2)
Cl50.0408 (3)0.0329 (2)0.0352 (2)0.00885 (19)0.00350 (19)0.00085 (19)
Cl60.0460 (3)0.0377 (3)0.0628 (4)0.0004 (2)0.0267 (3)0.0081 (3)
Cl70.0566 (3)0.0565 (3)0.0241 (2)0.0145 (3)0.0046 (2)0.0129 (2)
Cl80.0339 (2)0.0287 (2)0.0518 (3)0.00371 (18)0.0026 (2)0.0083 (2)
Cl90.0299 (2)0.0521 (3)0.0345 (2)0.0026 (2)0.00126 (18)0.0047 (2)
Cl100.0467 (3)0.0384 (3)0.0377 (3)0.0036 (2)0.0133 (2)0.0090 (2)
C10.0304 (9)0.0270 (9)0.0333 (9)0.0010 (7)0.0030 (7)0.0006 (7)
C20.0299 (9)0.0239 (8)0.0335 (9)0.0010 (7)0.0051 (7)0.0005 (7)
C30.0372 (9)0.0256 (9)0.0235 (8)0.0017 (7)0.0031 (7)0.0025 (7)
C40.0339 (9)0.0281 (9)0.0271 (8)0.0043 (7)0.0079 (7)0.0055 (7)
C50.0347 (9)0.0214 (8)0.0284 (8)0.0004 (7)0.0037 (7)0.0014 (7)
C60.0328 (9)0.0260 (9)0.0280 (8)0.0015 (7)0.0030 (7)0.0026 (7)
Geometric parameters (Å, º) top
Cl1—C11.721 (2)Cl9—C61.702 (2)
Cl2—C11.700 (2)Cl10—C61.718 (2)
Cl3—C21.736 (2)C1—C21.336 (3)
Cl4—C31.7806 (19)C2—C31.536 (3)
Cl5—C31.782 (2)C3—C41.586 (3)
Cl6—C41.793 (2)C4—C51.535 (3)
Cl7—C41.771 (2)C5—C61.339 (3)
Cl8—C51.737 (2)
C2—C1—Cl2126.87 (16)C5—C4—C3113.08 (15)
C2—C1—Cl1121.38 (16)C5—C4—Cl7112.13 (13)
Cl2—C1—Cl1111.75 (11)C3—C4—Cl7109.21 (14)
C1—C2—C3127.38 (18)C5—C4—Cl6109.18 (14)
C1—C2—Cl3116.37 (15)C3—C4—Cl6107.63 (13)
C3—C2—Cl3116.25 (14)Cl7—C4—Cl6105.21 (10)
C2—C3—C4113.02 (15)C6—C5—C4128.36 (18)
C2—C3—Cl4109.25 (13)C6—C5—Cl8116.56 (15)
C4—C3—Cl4109.03 (13)C4—C5—Cl8115.05 (14)
C2—C3—Cl5111.74 (13)C5—C6—Cl9127.43 (16)
C4—C3—Cl5108.28 (13)C5—C6—Cl10121.17 (16)
Cl4—C3—Cl5105.21 (10)Cl9—C6—Cl10111.40 (11)
Cl2—C1—C2—C31.4 (3)Cl5—C3—C4—Cl761.66 (14)
Cl1—C1—C2—C3179.52 (15)C2—C3—C4—Cl660.28 (18)
Cl2—C1—C2—Cl3178.47 (12)Cl4—C3—C4—Cl661.42 (15)
Cl1—C1—C2—Cl30.7 (2)Cl5—C3—C4—Cl6175.38 (9)
C1—C2—C3—C486.2 (2)C3—C4—C5—C690.7 (2)
Cl3—C2—C3—C493.61 (17)Cl7—C4—C5—C633.3 (3)
C1—C2—C3—Cl4152.21 (18)Cl6—C4—C5—C6149.47 (18)
Cl3—C2—C3—Cl427.96 (18)C3—C4—C5—Cl887.37 (18)
C1—C2—C3—Cl536.2 (3)Cl7—C4—C5—Cl8148.61 (11)
Cl3—C2—C3—Cl5143.95 (11)Cl6—C4—C5—Cl832.41 (17)
C2—C3—C4—C560.4 (2)C4—C5—C6—Cl92.0 (3)
Cl4—C3—C4—C5177.90 (14)Cl8—C5—C6—Cl9179.93 (11)
Cl5—C3—C4—C563.94 (18)C4—C5—C6—Cl10177.43 (15)
C2—C3—C4—Cl7174.00 (13)Cl8—C5—C6—Cl100.7 (2)
Cl4—C3—C4—Cl752.30 (16)

Experimental details

Crystal data
Chemical formulaC6Cl10
Mr426.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)12.8936 (5), 6.7051 (2), 15.3753 (5)
β (°) 93.858 (3)
V3)1326.23 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.07
Crystal size (mm)0.15 × 0.15 × 0.15
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionMulti-scan
(PLATON; Spek, 2009)
Tmin, Tmax0.747, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
18142, 3181, 2991
Rint0.044
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.06
No. of reflections3181
No. of parameters145
Δρmax, Δρmin (e Å3)0.94, 0.44

Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2011), SIR97 (Altomare et al. 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to Dieter Lenoir for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDetert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. pp. 1181–1190.  Web of Science CSD CrossRef Google Scholar
First citationHerbstein, F. H. (1979). Acta Cryst. B35, 1661–1670.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHerges, R., Papafilipopoulos, A., Hess, K., Lenoir, D., Chiappe, C. & Detert, H. (2005). Angew. Chem. Int. Ed. Engl. 44, 1412–1416.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHopf, H., Stamm, R. & Jones, P. G. (1991). Chem. Ber. 124, 1291–1294.  CrossRef CAS Web of Science Google Scholar
First citationMaahs, G. (1963). Angew. Chem. 75, 451–451.  CrossRef CAS Web of Science Google Scholar
First citationPrins, H. J. (1949). Recl Trav. Chim. Pays Bas, 68, 419–425.  CrossRef CAS Google Scholar
First citationRahimi, A. & Schmidt, A. (2010). Synthesis, pp. 2621–2625.  Google Scholar
First citationRao, C. N. R. & Livingston, R. (1958). Curr. Sci. 27, 330–331.  CAS Google Scholar
First citationRoedig, A., Bischoff, F., Heinrich, B. & Märkl, G. (1963). Justus Liebigs Ann. Chem. 670, 8–22.  CrossRef CAS Google Scholar
First citationSchmidt, A., Rahimi, A. & Gjikai, M. (2009). Synthesis, pp. 2371–2378.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-RED and X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds