metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­methyl­amino)­pyridinium tetra­chlorido(pyridine-2-carboxyl­ato-κ2N,O)stannate(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 May 2012; accepted 2 May 2012; online 5 May 2012)

The reaction of 4-(dimethyl­amino)­pyridine, picolinic acid and stannic chloride yields the title salt, (C7H11N2)[SnCl4(C6H4NO2)], in which the SnIV atom is N,O-chelated by the picolinate ion in a cis-SnNOCl4 octa­hedral geometry. The cation is linked to the anion by an N—H⋯O hydrogen bond.

Related literature

For 4-(dimethyl­amino)­pyridinium tetra­chlorido(quinoline-2-carboxyl­ato)stannate, see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1224.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)[SnCl4(C6H4NO2)]

  • Mr = 505.77

  • Triclinic, [P \overline 1]

  • a = 7.6658 (2) Å

  • b = 9.8948 (4) Å

  • c = 13.5722 (6) Å

  • α = 69.485 (4)°

  • β = 83.159 (3)°

  • γ = 67.900 (3)°

  • V = 893.25 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.580, Tmax = 0.686

  • 12966 measured reflections

  • 4109 independent reflections

  • 3744 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.049

  • S = 1.02

  • 4109 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.87 (1) 1.93 (1) 2.802 (2) 176 (2)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A previous study reported 4-(dimethylamino)pyridinium tetrachlorido(quinoline-2-carboxylato)stannate, which was synthesized by the reaction of 4-(dimethylamino)pyridine, quinoline-2-carboxylic acid and stannic chloride in methanol (Najafi et al., 2011). The reaction with picolinic acid in place of quinoline-2-carboxylic acid yielded the analogous salt, (C7H11N2)[SnCl4(C6H4NO2)] (Scheme I). The SnIV atom is N,O-chelated by the picolinate ion in a cis-SnNOCl4 octahedral geometry (Fig. 1). The cation is linked to the anion by an N–H···O hydrogen bond (Table 1).

Related literature top

For 4-(dimethylamino)pyridinium tetrachlorido(quinoline-2-carboxylato)stannate, see: Najafi et al. (2011).

Experimental top

Stannic chloride pentahydrate (0.35 g, 1 mmol), picolinic acid (0.12 g, 1 mmol) and 4-(dimethylamino)pyridine (0.12 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The pyridinium H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of N–H 0.88±0.01 Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of (C7H11N2)[SnCl4(C6H4NO2)] at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(Dimethylamino)pyridinium tetrachlorido(pyridine-2-carboxylato-κ2N,O)stannate(IV) top
Crystal data top
(C7H11N2)[SnCl4(C6H4NO2)]Z = 2
Mr = 505.77F(000) = 496
Triclinic, P1Dx = 1.880 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6658 (2) ÅCell parameters from 8614 reflections
b = 9.8948 (4) Åθ = 2.4–27.5°
c = 13.5722 (6) ŵ = 2.04 mm1
α = 69.485 (4)°T = 100 K
β = 83.159 (3)°Prism, colorless
γ = 67.900 (3)°0.30 × 0.25 × 0.20 mm
V = 893.25 (6) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4109 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3744 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1212
Tmin = 0.580, Tmax = 0.686l = 1717
12966 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0217P)2 + 0.1127P]
where P = (Fo2 + 2Fc2)/3
4109 reflections(Δ/σ)max = 0.002
214 parametersΔρmax = 0.61 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
(C7H11N2)[SnCl4(C6H4NO2)]γ = 67.900 (3)°
Mr = 505.77V = 893.25 (6) Å3
Triclinic, P1Z = 2
a = 7.6658 (2) ÅMo Kα radiation
b = 9.8948 (4) ŵ = 2.04 mm1
c = 13.5722 (6) ÅT = 100 K
α = 69.485 (4)°0.30 × 0.25 × 0.20 mm
β = 83.159 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4109 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3744 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 0.686Rint = 0.029
12966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0201 restraint
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.61 e Å3
4109 reflectionsΔρmin = 0.41 e Å3
214 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.471694 (16)0.931155 (14)0.787934 (10)0.01225 (5)
Cl10.41910 (7)1.16043 (5)0.82535 (4)0.01887 (11)
Cl20.63070 (7)0.97801 (6)0.62519 (4)0.01884 (11)
Cl30.76267 (6)0.79583 (6)0.88640 (4)0.01957 (11)
Cl40.16639 (6)1.04910 (5)0.70014 (4)0.01687 (10)
O10.48413 (18)0.72139 (15)0.77597 (11)0.0164 (3)
O20.3917 (2)0.51987 (16)0.84279 (12)0.0231 (3)
N10.3269 (2)0.83176 (18)0.93069 (12)0.0137 (3)
N20.6230 (2)0.5870 (2)0.61853 (14)0.0184 (4)
H20.574 (3)0.630 (3)0.6665 (15)0.038 (7)*
N30.8688 (2)0.35910 (18)0.40725 (13)0.0153 (3)
C10.3977 (3)0.6389 (2)0.84580 (16)0.0159 (4)
C20.3057 (3)0.7014 (2)0.93305 (15)0.0155 (4)
C30.2055 (3)0.6298 (2)1.01141 (17)0.0217 (5)
H30.19100.53821.01220.026*
C40.1268 (3)0.6952 (3)1.08887 (17)0.0270 (5)
H40.05450.65001.14280.032*
C50.1535 (3)0.8254 (3)1.08742 (16)0.0235 (5)
H50.10240.86941.14120.028*
C60.2552 (3)0.8922 (2)1.00731 (15)0.0178 (4)
H60.27440.98191.00660.021*
C70.6389 (3)0.4385 (2)0.64189 (16)0.0176 (4)
H70.59270.38830.70700.021*
C80.7198 (2)0.3592 (2)0.57414 (15)0.0153 (4)
H80.73040.25460.59220.018*
C90.7888 (2)0.4335 (2)0.47584 (15)0.0137 (4)
C100.7676 (3)0.5896 (2)0.45468 (16)0.0159 (4)
H100.81020.64440.39000.019*
C110.6865 (3)0.6614 (2)0.52659 (17)0.0183 (4)
H110.67450.76570.51170.022*
C120.8845 (3)0.1993 (2)0.42939 (17)0.0213 (5)
H12A0.96010.13290.49370.032*
H12B0.94540.16470.37040.032*
H12C0.75850.19330.43900.032*
C130.9392 (3)0.4362 (2)0.30663 (16)0.0201 (4)
H13A1.01570.48930.31860.030*
H13B0.83270.51180.25990.030*
H13C1.01640.35920.27410.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01423 (8)0.01017 (8)0.01266 (8)0.00471 (5)0.00094 (5)0.00403 (5)
Cl10.0237 (2)0.0125 (2)0.0218 (3)0.00547 (19)0.00284 (19)0.0074 (2)
Cl20.0212 (2)0.0168 (2)0.0171 (3)0.00816 (19)0.00602 (18)0.00436 (19)
Cl30.0165 (2)0.0175 (2)0.0221 (3)0.00282 (19)0.00390 (18)0.0058 (2)
Cl40.0166 (2)0.0169 (2)0.0167 (2)0.00586 (19)0.00196 (17)0.00459 (19)
O10.0222 (7)0.0122 (7)0.0173 (7)0.0088 (6)0.0041 (5)0.0062 (6)
O20.0294 (8)0.0166 (8)0.0270 (9)0.0130 (6)0.0004 (6)0.0063 (6)
N10.0137 (8)0.0129 (8)0.0121 (8)0.0034 (6)0.0013 (6)0.0025 (7)
N20.0170 (8)0.0200 (9)0.0193 (9)0.0035 (7)0.0013 (7)0.0105 (8)
N30.0178 (8)0.0118 (8)0.0167 (9)0.0054 (7)0.0020 (6)0.0054 (7)
C10.0149 (9)0.0134 (10)0.0178 (10)0.0052 (8)0.0041 (7)0.0019 (8)
C20.0136 (9)0.0131 (10)0.0156 (10)0.0032 (8)0.0040 (7)0.0001 (8)
C30.0189 (10)0.0203 (11)0.0214 (11)0.0093 (8)0.0026 (8)0.0020 (9)
C40.0186 (10)0.0331 (13)0.0181 (12)0.0088 (9)0.0027 (8)0.0032 (10)
C50.0190 (10)0.0286 (12)0.0143 (11)0.0009 (9)0.0011 (8)0.0050 (9)
C60.0168 (10)0.0197 (11)0.0133 (10)0.0028 (8)0.0017 (7)0.0047 (8)
C70.0144 (9)0.0201 (11)0.0168 (10)0.0071 (8)0.0009 (7)0.0031 (8)
C80.0138 (9)0.0125 (10)0.0177 (10)0.0052 (8)0.0010 (7)0.0018 (8)
C90.0105 (9)0.0130 (10)0.0165 (10)0.0035 (7)0.0027 (7)0.0036 (8)
C100.0174 (9)0.0120 (10)0.0179 (10)0.0060 (8)0.0029 (7)0.0027 (8)
C110.0177 (10)0.0120 (10)0.0244 (11)0.0036 (8)0.0062 (8)0.0048 (8)
C120.0227 (10)0.0138 (10)0.0289 (12)0.0058 (8)0.0011 (9)0.0099 (9)
C130.0208 (10)0.0208 (11)0.0170 (11)0.0067 (9)0.0030 (8)0.0059 (9)
Geometric parameters (Å, º) top
Sn1—O12.1041 (13)C4—C51.372 (3)
Sn1—N12.2194 (16)C4—H40.9500
Sn1—Cl12.3743 (5)C5—C61.381 (3)
Sn1—Cl22.3761 (5)C5—H50.9500
Sn1—Cl32.4006 (5)C6—H60.9500
Sn1—Cl42.4277 (5)C7—C81.359 (3)
O1—C11.311 (2)C7—H70.9500
O2—C11.210 (2)C8—C91.427 (3)
N1—C61.339 (2)C8—H80.9500
N1—C21.348 (3)C9—C101.416 (3)
N2—C111.348 (3)C10—C111.361 (3)
N2—C71.350 (3)C10—H100.9500
N2—H20.874 (10)C11—H110.9500
N3—C91.338 (2)C12—H12A0.9800
N3—C121.462 (3)C12—H12B0.9800
N3—C131.464 (2)C12—H12C0.9800
C1—C21.506 (3)C13—H13A0.9800
C2—C31.382 (3)C13—H13B0.9800
C3—C41.386 (3)C13—H13C0.9800
C3—H30.9500
O1—Sn1—N175.84 (6)C5—C4—H4120.1
O1—Sn1—Cl1169.89 (4)C3—C4—H4120.1
N1—Sn1—Cl194.27 (4)C4—C5—C6119.6 (2)
O1—Sn1—Cl288.75 (4)C4—C5—H5120.2
N1—Sn1—Cl2164.57 (4)C6—C5—H5120.2
Cl1—Sn1—Cl2101.090 (18)N1—C6—C5120.7 (2)
O1—Sn1—Cl389.31 (4)N1—C6—H6119.6
N1—Sn1—Cl388.57 (4)C5—C6—H6119.6
Cl1—Sn1—Cl392.581 (18)N2—C7—C8121.32 (19)
Cl2—Sn1—Cl392.190 (18)N2—C7—H7119.3
O1—Sn1—Cl487.20 (4)C8—C7—H7119.3
N1—Sn1—Cl486.38 (4)C7—C8—C9119.91 (19)
Cl1—Sn1—Cl490.124 (17)C7—C8—H8120.0
Cl2—Sn1—Cl492.055 (17)C9—C8—H8120.0
Cl3—Sn1—Cl4174.439 (17)N3—C9—C10121.88 (18)
C1—O1—Sn1119.22 (12)N3—C9—C8121.49 (18)
C6—N1—C2120.02 (17)C10—C9—C8116.63 (18)
C6—N1—Sn1126.65 (14)C11—C10—C9120.29 (19)
C2—N1—Sn1113.24 (12)C11—C10—H10119.9
C11—N2—C7120.66 (18)C9—C10—H10119.9
C11—N2—H2122.3 (18)N2—C11—C10121.18 (19)
C7—N2—H2117.0 (18)N2—C11—H11119.4
C9—N3—C12120.98 (17)C10—C11—H11119.4
C9—N3—C13121.09 (17)N3—C12—H12A109.5
C12—N3—C13117.91 (16)N3—C12—H12B109.5
O2—C1—O1123.64 (18)H12A—C12—H12B109.5
O2—C1—C2121.19 (18)N3—C12—H12C109.5
O1—C1—C2115.16 (17)H12A—C12—H12C109.5
N1—C2—C3121.61 (19)H12B—C12—H12C109.5
N1—C2—C1116.16 (17)N3—C13—H13A109.5
C3—C2—C1122.22 (19)N3—C13—H13B109.5
C2—C3—C4118.2 (2)H13A—C13—H13B109.5
C2—C3—H3120.9N3—C13—H13C109.5
C4—C3—H3120.9H13A—C13—H13C109.5
C5—C4—C3119.8 (2)H13B—C13—H13C109.5
N1—Sn1—O1—C14.83 (13)O1—C1—C2—N11.6 (2)
Cl1—Sn1—O1—C17.3 (3)O2—C1—C2—C32.2 (3)
Cl2—Sn1—O1—C1174.26 (13)O1—C1—C2—C3178.52 (17)
Cl3—Sn1—O1—C193.53 (13)N1—C2—C3—C40.3 (3)
Cl4—Sn1—O1—C182.14 (13)C1—C2—C3—C4179.61 (17)
O1—Sn1—N1—C6178.01 (16)C2—C3—C4—C51.5 (3)
Cl1—Sn1—N1—C64.12 (15)C3—C4—C5—C61.5 (3)
Cl2—Sn1—N1—C6178.59 (11)C2—N1—C6—C52.2 (3)
Cl3—Sn1—N1—C688.36 (15)Sn1—N1—C6—C5174.16 (13)
Cl4—Sn1—N1—C693.97 (15)C4—C5—C6—N10.4 (3)
O1—Sn1—N1—C25.40 (12)C11—N2—C7—C80.3 (3)
Cl1—Sn1—N1—C2172.47 (12)N2—C7—C8—C90.4 (3)
Cl2—Sn1—N1—C22.0 (2)C12—N3—C9—C10178.27 (17)
Cl3—Sn1—N1—C295.05 (12)C13—N3—C9—C100.2 (3)
Cl4—Sn1—N1—C282.62 (12)C12—N3—C9—C81.5 (3)
Sn1—O1—C1—O2177.24 (15)C13—N3—C9—C8179.96 (16)
Sn1—O1—C1—C23.5 (2)C7—C8—C9—N3179.87 (17)
C6—N1—C2—C32.2 (3)C7—C8—C9—C100.1 (3)
Sn1—N1—C2—C3174.69 (14)N3—C9—C10—C11179.60 (17)
C6—N1—C2—C1177.72 (16)C8—C9—C10—C110.6 (3)
Sn1—N1—C2—C15.44 (19)C7—N2—C11—C100.3 (3)
O2—C1—C2—N1177.67 (17)C9—C10—C11—N20.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.87 (1)1.93 (1)2.802 (2)176 (2)

Experimental details

Crystal data
Chemical formula(C7H11N2)[SnCl4(C6H4NO2)]
Mr505.77
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6658 (2), 9.8948 (4), 13.5722 (6)
α, β, γ (°)69.485 (4), 83.159 (3), 67.900 (3)
V3)893.25 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.580, 0.686
No. of measured, independent and
observed [I > 2σ(I)] reflections
12966, 4109, 3744
Rint0.029
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.049, 1.02
No. of reflections4109
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.41

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.87 (1)1.93 (1)2.802 (2)176 (2)
 

Acknowledgements

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds