organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1,2-Di-p-tolyl­vin­yl)-2-methyl-1H-indole

aDepartment of Chemistry, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India, cPost Graduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and dPost Graduate and Research Department of Physics, RKM Vivekananda College, Chennai 600 004, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 6 May 2012; accepted 13 May 2012; online 19 May 2012)

In the title compound, C25H23N, the indole unit makes a dihedral angles of 79.03 (5) and 61.82 (4)° with the benzene rings. No classical hydrogen bonds are found in the crystal structure.

Related literature

For the biological activity of indole derivatives, see: Olgen & Coban (2003[Olgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736-738.]); Joshi & Chand (1982[Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23N

  • Mr = 337.44

  • Monoclinic, C 2/c

  • a = 25.684 (6) Å

  • b = 9.911 (2) Å

  • c = 16.739 (4) Å

  • β = 112.646 (5)°

  • V = 3932.7 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 17685 measured reflections

  • 4931 independent reflections

  • 3008 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.159

  • S = 1.02

  • 4931 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Indole derivatives exhibit anti-oxidant (Olgen & Coban, 2003), anti-bacterial and fungicidal (Joshi & Chand, 1982) activities. Against this background, the title compound was chosen for X-ray structure analysis (Fig. 1).

The phenyl rings C11—C16 and C19—C24 form dihedral angles with the indole ring system of 79.03 (5)° and 61.82 (4)°, respectively.

The sum of the bond angles around N1 [359.99 (3)°] indicates sp2 hybridization.

No classical hydrogen bonds are found in the crystal structure.

Related literature top

For the biological activity of indole derivatives, see: Olgen & Coban (2003); Joshi & Chand (1982).

Experimental top

A mixture of di- p-tolylacetylene (3.0 mmol), 2-methyl indole (2.0 mmol), and indium bromide (0.2 mmol) in toluene (4 ml) was stirred at 110 oC for the 120 min t s time. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na2SO4, concentrated in vacuo, and purified by column chromatography on silica gel (Merck, 100–200 mesh) to afford a mixture of E and Z (>99%) isomers. These major isomers were separated by crystallization using ethyl acetate/petroleum ether.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.86 Å or C—H = 0.93 - 0.97 Å and Uiso(H) = 1.5Ueq(Cmethyl) or 1.2 Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
3-(1,2-Di-p-tolylvinyl)-2-methyl-1H-indole top
Crystal data top
C25H23NF(000) = 1440
Mr = 337.44Dx = 1.140 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4931 reflections
a = 25.684 (6) Åθ = 1.7–28.5°
b = 9.911 (2) ŵ = 0.07 mm1
c = 16.739 (4) ÅT = 298 K
β = 112.646 (5)°Block, colourless
V = 3932.7 (16) Å30.20 × 0.18 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3008 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 28.5°, θmin = 1.7°
ω and ϕ scansh = 3034
17685 measured reflectionsk = 137
4931 independent reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.9275P]
where P = (Fo2 + 2Fc2)/3
4931 reflections(Δ/σ)max = 0.004
238 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C25H23NV = 3932.7 (16) Å3
Mr = 337.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.684 (6) ŵ = 0.07 mm1
b = 9.911 (2) ÅT = 298 K
c = 16.739 (4) Å0.20 × 0.18 × 0.15 mm
β = 112.646 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3008 reflections with I > 2σ(I)
17685 measured reflectionsRint = 0.041
4931 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
4931 reflectionsΔρmin = 0.14 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23355 (7)0.99325 (17)0.37403 (11)0.0635 (4)
C20.25810 (8)1.1152 (2)0.40950 (14)0.0822 (6)
H20.29391.11870.45320.099*
C30.22776 (9)1.2299 (2)0.37794 (15)0.0880 (6)
H30.24321.31310.40070.106*
C40.17463 (9)1.22525 (19)0.31288 (14)0.0805 (5)
H40.15501.30520.29270.097*
C50.15015 (7)1.10443 (17)0.27736 (11)0.0634 (4)
H50.11451.10270.23310.076*
C60.17940 (6)0.98494 (15)0.30850 (10)0.0515 (4)
C70.16701 (6)0.84417 (15)0.29109 (10)0.0515 (4)
C80.21325 (6)0.77376 (17)0.34289 (11)0.0633 (4)
C90.22490 (9)0.6260 (2)0.35031 (16)0.0933 (7)
H9A0.19210.57820.31260.140*
H9B0.23390.59770.40900.140*
H9C0.25620.60690.33410.140*
C100.11288 (6)0.78539 (15)0.23107 (9)0.0505 (3)
C110.09375 (6)0.81897 (15)0.13777 (9)0.0504 (3)
C120.03693 (6)0.81403 (17)0.08275 (10)0.0597 (4)
H120.01000.79340.10540.072*
C130.02008 (7)0.83903 (18)0.00419 (10)0.0634 (4)
H130.01810.83480.03910.076*
C140.05803 (7)0.87039 (16)0.04178 (10)0.0596 (4)
C150.11407 (7)0.87811 (17)0.01237 (11)0.0625 (4)
H150.14070.89990.01060.075*
C160.13152 (6)0.85409 (16)0.10024 (10)0.0595 (4)
H160.16960.86170.13520.071*
C170.03825 (9)0.8940 (2)0.13756 (12)0.0831 (6)
H17A0.01210.82440.16790.125*
H17B0.07000.89250.15430.125*
H17C0.01990.98020.15170.125*
C180.08264 (6)0.70194 (16)0.25982 (10)0.0565 (4)
H180.05230.65990.21690.068*
C190.09043 (6)0.66727 (15)0.34913 (10)0.0528 (4)
C200.11046 (6)0.75841 (15)0.41800 (10)0.0543 (4)
H200.12250.84350.40900.065*
C210.11272 (6)0.72415 (17)0.49952 (10)0.0590 (4)
H210.12540.78740.54390.071*
C220.09638 (7)0.59720 (19)0.51636 (11)0.0676 (5)
C230.07698 (9)0.50732 (18)0.44865 (13)0.0774 (5)
H230.06580.42160.45820.093*
C240.07365 (7)0.54136 (17)0.36668 (12)0.0682 (5)
H240.05980.47840.32230.082*
C250.09838 (12)0.5605 (3)0.60507 (14)0.1054 (8)
H25A0.06890.49710.59940.158*
H25B0.09320.64030.63370.158*
H25C0.13430.52080.63850.158*
N10.25296 (6)0.86401 (15)0.39323 (10)0.0757 (4)
H10.28540.84230.43140.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0462 (8)0.0636 (11)0.0714 (11)0.0050 (7)0.0125 (8)0.0026 (8)
C20.0596 (10)0.0781 (13)0.0916 (14)0.0180 (10)0.0099 (10)0.0150 (11)
C30.0817 (13)0.0645 (12)0.1094 (16)0.0190 (10)0.0276 (12)0.0165 (11)
C40.0811 (13)0.0534 (10)0.1020 (15)0.0002 (9)0.0296 (11)0.0019 (10)
C50.0550 (9)0.0580 (10)0.0717 (11)0.0009 (7)0.0182 (8)0.0045 (8)
C60.0427 (7)0.0534 (9)0.0565 (8)0.0040 (6)0.0171 (6)0.0002 (7)
C70.0410 (7)0.0523 (8)0.0582 (9)0.0013 (6)0.0160 (6)0.0001 (7)
C80.0474 (8)0.0578 (10)0.0757 (11)0.0028 (7)0.0137 (8)0.0006 (8)
C90.0737 (12)0.0647 (12)0.1225 (18)0.0173 (10)0.0170 (12)0.0056 (11)
C100.0429 (7)0.0502 (8)0.0553 (8)0.0000 (6)0.0156 (6)0.0034 (7)
C110.0458 (7)0.0480 (8)0.0558 (9)0.0010 (6)0.0177 (7)0.0023 (7)
C120.0464 (8)0.0695 (10)0.0618 (10)0.0015 (7)0.0193 (7)0.0032 (8)
C130.0464 (8)0.0732 (11)0.0616 (10)0.0019 (8)0.0110 (7)0.0007 (8)
C140.0624 (9)0.0567 (9)0.0572 (9)0.0003 (7)0.0203 (8)0.0041 (7)
C150.0579 (9)0.0693 (11)0.0655 (10)0.0033 (8)0.0295 (8)0.0004 (8)
C160.0451 (8)0.0663 (10)0.0631 (10)0.0035 (7)0.0162 (7)0.0028 (8)
C170.0852 (13)0.1020 (15)0.0579 (11)0.0040 (11)0.0230 (10)0.0002 (10)
C180.0494 (8)0.0578 (9)0.0570 (9)0.0073 (7)0.0147 (7)0.0072 (7)
C190.0450 (8)0.0514 (8)0.0585 (9)0.0012 (6)0.0160 (7)0.0020 (7)
C200.0488 (8)0.0496 (8)0.0610 (9)0.0002 (6)0.0173 (7)0.0024 (7)
C210.0514 (8)0.0613 (10)0.0563 (9)0.0053 (7)0.0121 (7)0.0024 (7)
C220.0667 (10)0.0669 (11)0.0645 (11)0.0082 (8)0.0202 (8)0.0165 (9)
C230.0913 (13)0.0547 (10)0.0850 (13)0.0062 (9)0.0326 (11)0.0148 (9)
C240.0755 (11)0.0527 (10)0.0722 (11)0.0104 (8)0.0239 (9)0.0031 (8)
C250.136 (2)0.1029 (17)0.0779 (14)0.0039 (15)0.0424 (14)0.0278 (12)
N10.0441 (7)0.0726 (10)0.0869 (11)0.0043 (7)0.0010 (7)0.0016 (8)
Geometric parameters (Å, º) top
C1—N11.367 (2)C13—H130.9300
C1—C21.387 (2)C14—C151.376 (2)
C1—C61.403 (2)C14—C171.502 (2)
C2—C31.364 (3)C15—C161.383 (2)
C2—H20.9300C15—H150.9300
C3—C41.380 (3)C16—H160.9300
C3—H30.9300C17—H17A0.9600
C4—C51.377 (2)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—C61.392 (2)C18—C191.470 (2)
C5—H50.9300C18—H180.9300
C6—C71.436 (2)C19—C241.388 (2)
C7—C81.362 (2)C19—C201.398 (2)
C7—C101.485 (2)C20—C211.386 (2)
C8—N11.374 (2)C20—H200.9300
C8—C91.491 (3)C21—C221.389 (2)
C9—H9A0.9600C21—H210.9300
C9—H9B0.9600C22—C231.375 (3)
C9—H9C0.9600C22—C251.510 (3)
C10—C181.344 (2)C23—C241.383 (2)
C10—C111.483 (2)C23—H230.9300
C11—C161.388 (2)C24—H240.9300
C11—C121.395 (2)C25—H25A0.9600
C12—C131.372 (2)C25—H25B0.9600
C12—H120.9300C25—H25C0.9600
C13—C141.384 (2)N1—H10.8600
N1—C1—C2130.67 (16)C13—C14—C17120.83 (15)
N1—C1—C6106.90 (14)C14—C15—C16121.29 (15)
C2—C1—C6122.41 (16)C14—C15—H15119.4
C3—C2—C1117.58 (17)C16—C15—H15119.4
C3—C2—H2121.2C15—C16—C11121.84 (14)
C1—C2—H2121.2C15—C16—H16119.1
C2—C3—C4121.40 (18)C11—C16—H16119.1
C2—C3—H3119.3C14—C17—H17A109.5
C4—C3—H3119.3C14—C17—H17B109.5
C5—C4—C3121.23 (18)H17A—C17—H17B109.5
C5—C4—H4119.4C14—C17—H17C109.5
C3—C4—H4119.4H17A—C17—H17C109.5
C4—C5—C6119.17 (16)H17B—C17—H17C109.5
C4—C5—H5120.4C10—C18—C19129.53 (14)
C6—C5—H5120.4C10—C18—H18115.2
C5—C6—C1118.19 (14)C19—C18—H18115.2
C5—C6—C7134.86 (14)C24—C19—C20116.88 (15)
C1—C6—C7106.93 (13)C24—C19—C18119.56 (14)
C8—C7—C6107.33 (13)C20—C19—C18123.40 (14)
C8—C7—C10126.10 (14)C21—C20—C19121.10 (15)
C6—C7—C10126.51 (13)C21—C20—H20119.4
C7—C8—N1108.43 (15)C19—C20—H20119.4
C7—C8—C9130.86 (16)C20—C21—C22121.36 (16)
N1—C8—C9120.72 (15)C20—C21—H21119.3
C8—C9—H9A109.5C22—C21—H21119.3
C8—C9—H9B109.5C23—C22—C21117.47 (16)
H9A—C9—H9B109.5C23—C22—C25121.24 (18)
C8—C9—H9C109.5C21—C22—C25121.27 (18)
H9A—C9—H9C109.5C22—C23—C24121.59 (17)
H9B—C9—H9C109.5C22—C23—H23119.2
C18—C10—C11120.81 (13)C24—C23—H23119.2
C18—C10—C7121.24 (14)C23—C24—C19121.57 (16)
C11—C10—C7117.94 (12)C23—C24—H24119.2
C16—C11—C12116.48 (14)C19—C24—H24119.2
C16—C11—C10121.80 (13)C22—C25—H25A109.5
C12—C11—C10121.71 (13)C22—C25—H25B109.5
C13—C12—C11121.11 (14)H25A—C25—H25B109.5
C13—C12—H12119.4C22—C25—H25C109.5
C11—C12—H12119.4H25A—C25—H25C109.5
C12—C13—C14122.23 (14)H25B—C25—H25C109.5
C12—C13—H13118.9C1—N1—C8110.39 (13)
C14—C13—H13118.9C1—N1—H1124.8
C15—C14—C13117.00 (15)C8—N1—H1124.8
C15—C14—C17122.17 (15)
N1—C1—C2—C3178.7 (2)C10—C11—C12—C13176.84 (15)
C6—C1—C2—C30.5 (3)C11—C12—C13—C140.1 (3)
C1—C2—C3—C40.2 (3)C12—C13—C14—C151.2 (3)
C2—C3—C4—C50.1 (3)C12—C13—C14—C17178.54 (17)
C3—C4—C5—C60.7 (3)C13—C14—C15—C160.7 (2)
C4—C5—C6—C11.4 (2)C17—C14—C15—C16179.04 (16)
C4—C5—C6—C7176.60 (17)C14—C15—C16—C111.1 (3)
N1—C1—C6—C5179.83 (14)C12—C11—C16—C152.3 (2)
C2—C1—C6—C51.3 (3)C10—C11—C16—C15176.34 (15)
N1—C1—C6—C71.32 (18)C11—C10—C18—C19172.65 (14)
C2—C1—C6—C7177.21 (16)C7—C10—C18—C198.8 (2)
C5—C6—C7—C8179.97 (17)C10—C18—C19—C24150.56 (17)
C1—C6—C7—C81.89 (18)C10—C18—C19—C2034.2 (2)
C5—C6—C7—C102.8 (3)C24—C19—C20—C210.7 (2)
C1—C6—C7—C10175.31 (14)C18—C19—C20—C21174.69 (14)
C6—C7—C8—N11.72 (19)C19—C20—C21—C221.4 (2)
C10—C7—C8—N1175.50 (14)C20—C21—C22—C231.0 (2)
C6—C7—C8—C9177.8 (2)C20—C21—C22—C25179.43 (17)
C10—C7—C8—C95.0 (3)C21—C22—C23—C240.1 (3)
C8—C7—C10—C1858.0 (2)C25—C22—C23—C24178.30 (19)
C6—C7—C10—C18118.71 (18)C22—C23—C24—C190.9 (3)
C8—C7—C10—C11120.58 (17)C20—C19—C24—C230.5 (2)
C6—C7—C10—C1162.7 (2)C18—C19—C24—C23176.00 (16)
C18—C10—C11—C16152.49 (15)C2—C1—N1—C8178.08 (19)
C7—C10—C11—C1626.1 (2)C6—C1—N1—C80.3 (2)
C18—C10—C11—C1226.1 (2)C7—C8—N1—C10.9 (2)
C7—C10—C11—C12155.35 (14)C9—C8—N1—C1178.67 (18)
C16—C11—C12—C131.8 (2)

Experimental details

Crystal data
Chemical formulaC25H23N
Mr337.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)25.684 (6), 9.911 (2), 16.739 (4)
β (°) 112.646 (5)
V3)3932.7 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17685, 4931, 3008
Rint0.041
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.159, 1.02
No. of reflections4931
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT–Madras, India, for the data collection.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJoshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12.  CAS PubMed Web of Science Google Scholar
First citationOlgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736–738.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds