organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Iso­propyl-4,7-di­methyl-2,8-di­nitro­naphthalene

aLaboratoire de Chimie des Substances Naturelles, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: berraho@uca.ma

(Received 7 May 2012; accepted 11 May 2012; online 26 May 2012)

The title compound, C15H16N2O4, was synthesized from a mixture of α-himachalene (2-methyl­ene-6,6,9-trimethyl­bicyclo­[5.4.O1,7]undec-8-ene) and β-himachalene (2,6,6,9-tetra­methyl­bicyclo­[5.4.01,7]undeca-1,8-diene) which were isolated from an oil of the Atlas cedar (Cedrus atlantica). The asymmetric unit contains two independent mol­ecules. In each of the two mol­ecules, two O atoms of one nitro group are disordered over two sets of sites with site-occupancy factors of 0.636 (5):0.364 (5) and 0.832 (5):0.168 (5). The crystal structure features weak C—H⋯O hydrogen bonds.

Related literature

For the isolation of α-himachalene and β-himachalene, see: Joseph & Dev (1968[Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841-3859.]); Plattier & Teisseire (1974[Plattier, M. & Teisseire, P. (1974). Recherche, 19, 131-144.]); Daunis et al. (1981[Daunis, J., Jacquier, R., Lopez, H. & Viallefont, Ph. (1981). J. Chem. Res. pp. 639-649.]). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998[Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641-2651.]); Chekroun et al. (2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]); Dakir et al. (2004[Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]). For its biological activity, see: Daoubi et al. (2004[Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O4

  • Mr = 288.30

  • Triclinic, [P \overline 1]

  • a = 11.7784 (7) Å

  • b = 11.9072 (9) Å

  • c = 12.4494 (10) Å

  • α = 107.928 (7)°

  • β = 112.834 (7)°

  • γ = 104.536 (6)°

  • V = 1387.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 180 K

  • 0.49 × 0.22 × 0.14 mm

Data collection
  • Agilent Xcalibur Sapphire1 (long-nozzle) diffractometer

  • 25504 measured reflections

  • 4881 independent reflections

  • 4084 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.152

  • S = 1.08

  • 4881 reflections

  • 425 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11B—H11C⋯O82i 0.98 2.42 3.243 (6) 142
C11A—H11F⋯O84Aii 0.98 2.43 3.240 (5) 139
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The bicyclic sesquiterpenes α- and β-himachalene are the main constituents of the essential oil of the Atlas cedar (Cedrus atlantica) (Joseph & Dev, 1968; Plattier & Teisseire, 1974). The reactivity of these sesquiterpenes and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004). The catalytic dehydrogenation of the mixture of α- and β-himachalene by 5% of palladium on carbon(10%) gives, with good yield, the aryl-himachalene (Daunis et al., 1981). Treatement of the latter by a mixture of nitric acid and sulfuric acid, gives the title compound with a yield of 20%. The structure of this new product was confirmed by its crystal structure. The molecular structure of (I) is shown in Fig. 1. The asymmetric unit contains two molecules of 1-isopropyl-4,7-dimethyl-2,8-dinitro-naphthalene. The naphthalene ring systems are approximately planar with r.s.d.deviations of 0.087 (2) and 0.090 (2) A°. The bond lengths and angles are within normal ranges in both molecules. In the crystal structure, the two molecules are not parallel but have a dihedral angle of 1.54 (7)°. The crystal structure is stabilized by intermolecular C–H···O hydrogen bonds, which link the molecules into chains parallel to the c axis (Fig. 2, Table 1).

Related literature top

For the isolation of α-himachalene and β-himachalene, see: Joseph & Dev (1968); Plattier & Teisseire (1974); Daunis et al. (1981). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004).

Experimental top

In a reactor of 250 ml equipped with a magnetic stirrer and a dropping funnel, we introduct 60 ml of dichloromethane, 3 ml of nitric acid and 5 ml of concentrated sulfuric acid. After cooling, added dropwise through the dropping funnel 6 g (30 mmol) of aryl-himachalene dissolved in 30 ml of dichloromethane. The reaction mixture was stirred for 4 h, then added 50 ml of water ice and extracted with dichloromethane. The organic layers were combined, washed five times with 4O ml with water and dried over sodium sulfate and then concentrated under vacuum. The residue was subjected to chromatography on a column of silica gel with hexane-ethyl acetate (98/2) as eluent, to obtain 1.7 g (6 mmol) of the title compound which was recrystallized in ethyl acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl). In each of the two molecules, two O atoms of one nitro group are disordered over two positions with site occupancy factors of 0.636 (5)/0.364 (5) for the first molecule, and 0.832 (5)/0.168 (5) for the second molecule.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Partial packing view showing the C—H···O interactions (dashed lines) and the formation of a chain parallel to the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-Isopropyl-4,7-dimethyl-2,8-dinitronaphthalene top
Crystal data top
C15H16N2O4Z = 4
Mr = 288.30F(000) = 608
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.7784 (7) ÅCell parameters from 13404 reflections
b = 11.9072 (9) Åθ = 3.1–28.4°
c = 12.4494 (10) ŵ = 0.10 mm1
α = 107.928 (7)°T = 180 K
β = 112.834 (7)°Box, orange
γ = 104.536 (6)°0.49 × 0.22 × 0.14 mm
V = 1387.6 (2) Å3
Data collection top
Agilent Xcalibur Sapphire1 (long-nozzle)
diffractometer
4084 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
Detector resolution: 8.2632 pixels mm-1h = 1414
ω scansk = 1414
25504 measured reflectionsl = 1414
4881 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.9464P]
where P = (Fo2 + 2Fc2)/3
4881 reflections(Δ/σ)max < 0.001
425 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H16N2O4γ = 104.536 (6)°
Mr = 288.30V = 1387.6 (2) Å3
Triclinic, P1Z = 4
a = 11.7784 (7) ÅMo Kα radiation
b = 11.9072 (9) ŵ = 0.10 mm1
c = 12.4494 (10) ÅT = 180 K
α = 107.928 (7)°0.49 × 0.22 × 0.14 mm
β = 112.834 (7)°
Data collection top
Agilent Xcalibur Sapphire1 (long-nozzle)
diffractometer
4084 reflections with I > 2σ(I)
25504 measured reflectionsRint = 0.048
4881 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
4881 reflectionsΔρmin = 0.26 e Å3
425 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N2B0.12177 (19)0.0333 (2)0.42969 (19)0.0400 (5)
O210.04646 (17)0.14879 (18)0.35187 (18)0.0557 (5)
O220.08307 (17)0.05310 (19)0.45226 (18)0.0513 (5)
C1B0.3602 (2)0.10012 (19)0.49485 (19)0.0280 (4)
C2B0.2692 (2)0.0062 (2)0.5059 (2)0.0312 (5)
C3B0.3074 (2)0.0430 (2)0.5940 (2)0.0374 (5)
C4B0.4479 (2)0.0090 (2)0.6837 (2)0.0412 (5)
H40.47870.02430.74430.049*
C5B0.5394 (2)0.1052 (2)0.6852 (2)0.0386 (5)
H50.63240.14100.75030.046*
C6B0.5015 (2)0.1544 (2)0.59319 (19)0.0312 (5)
C7B0.6027 (2)0.2564 (2)0.5992 (2)0.0356 (5)
C8B0.5566 (2)0.2971 (2)0.5057 (2)0.0380 (5)
N8B0.6494 (2)0.4042 (2)0.5031 (2)0.0534 (6)
O810.6072 (3)0.4850 (3)0.4795 (4)0.0800 (15)0.636 (5)
O820.7589 (4)0.4098 (4)0.5207 (5)0.0887 (16)0.636 (5)
O81B0.6349 (6)0.3925 (7)0.4012 (6)0.080 (3)0.364 (5)
O82B0.7403 (6)0.4984 (6)0.6108 (6)0.077 (2)0.364 (5)
C9B0.4217 (2)0.2397 (2)0.4043 (2)0.0371 (5)
H90.39810.27120.34100.044*
C10B0.3226 (2)0.1397 (2)0.3930 (2)0.0305 (4)
C11B0.2082 (3)0.1448 (3)0.6004 (3)0.0533 (7)
H11A0.12970.12520.59020.080*
H11B0.25250.14500.68520.080*
H11C0.17770.23060.53010.080*
C12B0.7496 (2)0.3132 (3)0.7049 (2)0.0516 (6)
H12A0.78770.25020.68650.077*
H12B0.75530.33300.78980.077*
H12C0.80110.39340.70710.077*
C13B0.1839 (2)0.0751 (2)0.2675 (2)0.0363 (5)
H130.12630.00440.26500.044*
C14B0.1119 (2)0.1656 (3)0.2664 (3)0.0521 (7)
H14A0.16290.24130.26200.078*
H14B0.10680.19480.34640.078*
H14C0.01980.11870.19000.078*
C15B0.1981 (2)0.0324 (3)0.1465 (2)0.0468 (6)
H15A0.24850.10940.14340.070*
H15B0.10760.01670.06790.070*
H15C0.24730.02290.15040.070*
N2A0.54123 (18)0.18844 (18)0.0592 (2)0.0411 (5)
O21A0.50204 (18)0.18713 (19)0.13648 (19)0.0555 (5)
O22A0.60540 (17)0.12814 (16)0.03450 (18)0.0531 (5)
C1A0.6104 (2)0.36905 (19)0.00222 (19)0.0286 (4)
C2A0.5054 (2)0.2631 (2)0.0138 (2)0.0322 (5)
C3A0.3692 (2)0.2123 (2)0.1043 (2)0.0370 (5)
C4A0.3327 (2)0.2679 (2)0.1899 (2)0.0411 (6)
H4A0.23950.23790.25170.049*
C5A0.4280 (2)0.3635 (2)0.1861 (2)0.0385 (5)
H5A0.39990.39570.24820.046*
C6A0.5681 (2)0.4170 (2)0.09219 (19)0.0321 (5)
C7A0.6641 (2)0.5173 (2)0.0930 (2)0.0363 (5)
C8A0.7973 (2)0.5639 (2)0.0014 (2)0.0378 (5)
N8A0.9075 (2)0.6642 (3)0.0088 (3)0.0509 (6)
O84A0.8930 (3)0.7589 (3)0.0031 (3)0.0754 (10)0.832 (5)
O83A1.0134 (3)0.6522 (3)0.0337 (3)0.0739 (10)0.832 (5)
O830.8868 (16)0.6378 (15)0.1107 (14)0.092 (6)0.168 (5)
O840.985 (2)0.7387 (19)0.0982 (18)0.100 (7)0.168 (5)
C9A0.8398 (2)0.5236 (2)0.0982 (2)0.0361 (5)
H9A0.93370.56130.16130.043*
C10A0.7506 (2)0.4317 (2)0.1052 (2)0.0315 (5)
C11A0.2617 (2)0.1001 (3)0.1173 (3)0.0541 (7)
H11D0.29490.03350.11050.081*
H11E0.17910.06260.20250.081*
H11F0.24140.13140.04750.081*
C12A0.6183 (3)0.5633 (3)0.1961 (2)0.0510 (6)
H12D0.69710.61140.19880.077*
H12E0.57510.62030.17470.077*
H12F0.55310.48790.28160.077*
C13A0.8082 (2)0.4112 (2)0.2271 (2)0.0380 (5)
H13A0.73030.35300.22700.046*
C14A0.9031 (3)0.3446 (3)0.2262 (3)0.0558 (7)
H14D0.85440.26180.14640.084*
H14E0.93400.32830.30290.084*
H14F0.98170.40100.22890.084*
C15A0.8806 (3)0.5412 (3)0.3512 (2)0.0520 (7)
H15D0.90800.52540.42820.078*
H15E0.81870.58360.34790.078*
H15F0.96120.59780.35670.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N2B0.0325 (10)0.0534 (13)0.0430 (11)0.0181 (10)0.0194 (9)0.0319 (10)
O210.0365 (9)0.0521 (11)0.0577 (11)0.0039 (8)0.0110 (8)0.0297 (9)
O220.0449 (10)0.0755 (13)0.0656 (12)0.0388 (10)0.0364 (9)0.0475 (10)
C1B0.0280 (10)0.0284 (10)0.0274 (10)0.0150 (8)0.0124 (8)0.0117 (8)
C2B0.0309 (11)0.0349 (11)0.0294 (10)0.0173 (9)0.0141 (9)0.0152 (9)
C3B0.0449 (13)0.0403 (12)0.0319 (11)0.0215 (10)0.0201 (10)0.0184 (10)
C4B0.0510 (14)0.0487 (14)0.0305 (11)0.0310 (12)0.0169 (10)0.0223 (10)
C5B0.0370 (12)0.0441 (13)0.0281 (11)0.0244 (11)0.0087 (9)0.0130 (10)
C6B0.0317 (11)0.0320 (11)0.0262 (10)0.0178 (9)0.0118 (9)0.0091 (9)
C7B0.0284 (11)0.0322 (11)0.0333 (11)0.0124 (9)0.0115 (9)0.0058 (9)
C8B0.0330 (11)0.0310 (11)0.0413 (12)0.0077 (9)0.0171 (10)0.0133 (10)
N8B0.0397 (12)0.0451 (13)0.0546 (15)0.0039 (10)0.0154 (11)0.0207 (12)
O810.058 (2)0.055 (2)0.100 (3)0.0064 (16)0.0132 (19)0.052 (2)
O820.049 (2)0.093 (3)0.143 (4)0.0239 (19)0.056 (2)0.073 (3)
O81B0.065 (4)0.080 (5)0.050 (4)0.017 (3)0.023 (3)0.025 (3)
O82B0.057 (4)0.051 (4)0.074 (4)0.012 (3)0.032 (3)0.003 (3)
C9B0.0333 (11)0.0369 (12)0.0384 (12)0.0131 (10)0.0141 (10)0.0207 (10)
C10B0.0282 (10)0.0320 (11)0.0321 (11)0.0146 (9)0.0130 (9)0.0169 (9)
C11B0.0593 (16)0.0582 (16)0.0484 (15)0.0211 (13)0.0264 (13)0.0353 (13)
C12B0.0312 (12)0.0538 (15)0.0452 (14)0.0127 (11)0.0082 (11)0.0129 (12)
C13B0.0270 (10)0.0426 (12)0.0381 (12)0.0117 (9)0.0108 (9)0.0266 (10)
C14B0.0374 (13)0.0678 (17)0.0646 (17)0.0292 (12)0.0213 (12)0.0460 (15)
C15B0.0386 (13)0.0566 (15)0.0350 (12)0.0129 (11)0.0106 (10)0.0251 (11)
N2A0.0302 (10)0.0333 (10)0.0468 (11)0.0075 (8)0.0087 (9)0.0221 (9)
O21A0.0447 (10)0.0669 (12)0.0605 (11)0.0169 (9)0.0240 (9)0.0441 (10)
O22A0.0439 (10)0.0380 (9)0.0684 (12)0.0221 (8)0.0159 (9)0.0260 (9)
C1A0.0313 (10)0.0306 (10)0.0278 (10)0.0183 (9)0.0145 (9)0.0142 (9)
C2A0.0311 (11)0.0314 (11)0.0308 (11)0.0152 (9)0.0113 (9)0.0141 (9)
C3A0.0300 (11)0.0364 (12)0.0349 (11)0.0141 (9)0.0116 (9)0.0111 (10)
C4A0.0318 (11)0.0479 (14)0.0307 (11)0.0221 (11)0.0068 (9)0.0107 (10)
C5A0.0407 (12)0.0484 (14)0.0292 (11)0.0282 (11)0.0133 (10)0.0190 (10)
C6A0.0377 (11)0.0376 (12)0.0269 (10)0.0247 (10)0.0160 (9)0.0147 (9)
C7A0.0483 (13)0.0411 (12)0.0332 (11)0.0271 (11)0.0239 (10)0.0218 (10)
C8A0.0418 (12)0.0405 (12)0.0423 (12)0.0196 (10)0.0258 (11)0.0238 (10)
N8A0.0493 (14)0.0586 (15)0.0548 (15)0.0195 (12)0.0284 (12)0.0370 (13)
O84A0.0739 (18)0.0607 (17)0.111 (2)0.0272 (14)0.0484 (17)0.0601 (17)
O83A0.0475 (15)0.104 (2)0.102 (2)0.0338 (15)0.0435 (15)0.074 (2)
O830.110 (12)0.088 (11)0.084 (10)0.010 (9)0.072 (10)0.040 (9)
O840.086 (12)0.092 (13)0.079 (12)0.013 (11)0.032 (10)0.041 (10)
C9A0.0326 (11)0.0399 (12)0.0389 (12)0.0162 (10)0.0163 (10)0.0229 (10)
C10A0.0302 (10)0.0344 (11)0.0325 (11)0.0173 (9)0.0137 (9)0.0184 (9)
C11A0.0320 (12)0.0507 (15)0.0519 (15)0.0063 (11)0.0082 (11)0.0174 (13)
C12A0.0633 (16)0.0617 (16)0.0449 (14)0.0343 (14)0.0286 (13)0.0355 (13)
C13A0.0258 (10)0.0446 (13)0.0404 (12)0.0111 (9)0.0093 (9)0.0283 (11)
C14A0.0409 (13)0.0651 (17)0.0715 (18)0.0295 (13)0.0199 (13)0.0482 (15)
C15A0.0418 (13)0.0590 (16)0.0378 (13)0.0104 (12)0.0080 (11)0.0264 (12)
Geometric parameters (Å, º) top
N2B—O221.226 (3)N2A—O21A1.220 (3)
N2B—O211.231 (3)N2A—O22A1.224 (3)
N2B—C2B1.474 (3)N2A—C2A1.477 (3)
C1B—C2B1.423 (3)C1A—C2A1.425 (3)
C1B—C10B1.436 (3)C1A—C6A1.435 (3)
C1B—C6B1.442 (3)C1A—C10A1.441 (3)
C2B—C3B1.376 (3)C2A—C3A1.378 (3)
C3B—C4B1.413 (3)C3A—C4A1.408 (3)
C3B—C11B1.505 (3)C3A—C11A1.507 (3)
C4B—C5B1.350 (3)C4A—C5A1.357 (3)
C4B—H40.9500C4A—H4A0.9500
C5B—C6B1.415 (3)C5A—C6A1.419 (3)
C5B—H50.9500C5A—H5A0.9500
C6B—C7B1.432 (3)C6A—C7A1.429 (3)
C7B—C8B1.368 (3)C7A—C8A1.371 (3)
C7B—C12B1.510 (3)C7A—C12A1.510 (3)
C8B—C9B1.398 (3)C8A—C9A1.394 (3)
C8B—N8B1.475 (3)C8A—N8A1.476 (3)
N8B—O81B1.170 (6)N8A—O841.028 (18)
N8B—O821.201 (4)N8A—O83A1.220 (3)
N8B—O82B1.248 (6)N8A—O84A1.226 (3)
N8B—O811.249 (4)N8A—O831.328 (13)
C9B—C10B1.369 (3)C9A—C10A1.363 (3)
C9B—H90.9500C9A—H9A0.9500
C10B—C13B1.533 (3)C10A—C13A1.529 (3)
C11B—H11A0.9800C11A—H11D0.9800
C11B—H11B0.9800C11A—H11E0.9800
C11B—H11C0.9800C11A—H11F0.9800
C12B—H12A0.9800C12A—H12D0.9800
C12B—H12B0.9800C12A—H12E0.9800
C12B—H12C0.9800C12A—H12F0.9800
C13B—C15B1.524 (3)C13A—C14A1.525 (3)
C13B—C14B1.530 (3)C13A—C15A1.534 (3)
C13B—H131.0000C13A—H13A1.0000
C14B—H14A0.9800C14A—H14D0.9800
C14B—H14B0.9800C14A—H14E0.9800
C14B—H14C0.9800C14A—H14F0.9800
C15B—H15A0.9800C15A—H15D0.9800
C15B—H15B0.9800C15A—H15E0.9800
C15B—H15C0.9800C15A—H15F0.9800
O22—N2B—O21124.71 (19)O21A—N2A—O22A124.2 (2)
O22—N2B—C2B116.18 (19)O21A—N2A—C2A118.68 (19)
O21—N2B—C2B119.07 (19)O22A—N2A—C2A117.1 (2)
C2B—C1B—C10B125.38 (18)C2A—C1A—C6A115.35 (18)
C2B—C1B—C6B115.49 (18)C2A—C1A—C10A125.69 (18)
C10B—C1B—C6B119.10 (18)C6A—C1A—C10A118.94 (18)
C3B—C2B—C1B125.10 (19)C3A—C2A—C1A125.33 (19)
C3B—C2B—N2B114.96 (19)C3A—C2A—N2A114.58 (19)
C1B—C2B—N2B119.57 (17)C1A—C2A—N2A119.71 (17)
C2B—C3B—C4B116.7 (2)C2A—C3A—C4A116.7 (2)
C2B—C3B—C11B123.6 (2)C2A—C3A—C11A123.4 (2)
C4B—C3B—C11B119.7 (2)C4A—C3A—C11A119.9 (2)
C5B—C4B—C3B121.4 (2)C5A—C4A—C3A121.3 (2)
C5B—C4B—H4119.3C5A—C4A—H4A119.3
C3B—C4B—H4119.3C3A—C4A—H4A119.3
C4B—C5B—C6B122.3 (2)C4A—C5A—C6A122.1 (2)
C4B—C5B—H5118.8C4A—C5A—H5A118.9
C6B—C5B—H5118.8C6A—C5A—H5A118.9
C5B—C6B—C7B120.00 (19)C5A—C6A—C7A119.76 (19)
C5B—C6B—C1B118.7 (2)C5A—C6A—C1A118.9 (2)
C7B—C6B—C1B121.29 (18)C7A—C6A—C1A121.30 (19)
C8B—C7B—C6B115.83 (19)C8A—C7A—C6A115.99 (19)
C8B—C7B—C12B124.0 (2)C8A—C7A—C12A123.4 (2)
C6B—C7B—C12B120.1 (2)C6A—C7A—C12A120.5 (2)
C7B—C8B—C9B123.7 (2)C7A—C8A—C9A123.6 (2)
C7B—C8B—N8B121.4 (2)C7A—C8A—N8A121.6 (2)
C9B—C8B—N8B114.8 (2)C9A—C8A—N8A114.7 (2)
O81B—N8B—O8280.8 (4)O84—N8A—O83A70.0 (14)
O81B—N8B—O82B125.3 (4)O84—N8A—O84A79.0 (12)
O82—N8B—O82B70.5 (4)O83A—N8A—O84A122.3 (3)
O81B—N8B—O8172.2 (4)O84—N8A—O83130.3 (11)
O82—N8B—O81122.9 (3)O83A—N8A—O8387.0 (8)
O82B—N8B—O8185.6 (4)O84A—N8A—O8377.5 (7)
O81B—N8B—C8B117.7 (3)O84—N8A—C8A120.0 (9)
O82—N8B—C8B120.3 (3)O83A—N8A—C8A117.8 (2)
O82B—N8B—C8B116.9 (3)O84A—N8A—C8A119.7 (2)
O81—N8B—C8B116.8 (3)O83—N8A—C8A109.7 (6)
C10B—C9B—C8B122.2 (2)C10A—C9A—C8A122.1 (2)
C10B—C9B—H9118.9C10A—C9A—H9A119.0
C8B—C9B—H9118.9C8A—C9A—H9A119.0
C9B—C10B—C1B117.35 (18)C9A—C10A—C1A117.62 (18)
C9B—C10B—C13B116.21 (18)C9A—C10A—C13A116.26 (18)
C1B—C10B—C13B126.32 (18)C1A—C10A—C13A126.00 (18)
C3B—C11B—H11A109.5C3A—C11A—H11D109.5
C3B—C11B—H11B109.5C3A—C11A—H11E109.5
H11A—C11B—H11B109.5H11D—C11A—H11E109.5
C3B—C11B—H11C109.5C3A—C11A—H11F109.5
H11A—C11B—H11C109.5H11D—C11A—H11F109.5
H11B—C11B—H11C109.5H11E—C11A—H11F109.5
C7B—C12B—H12A109.5C7A—C12A—H12D109.5
C7B—C12B—H12B109.5C7A—C12A—H12E109.5
H12A—C12B—H12B109.5H12D—C12A—H12E109.5
C7B—C12B—H12C109.5C7A—C12A—H12F109.5
H12A—C12B—H12C109.5H12D—C12A—H12F109.5
H12B—C12B—H12C109.5H12E—C12A—H12F109.5
C15B—C13B—C14B110.56 (19)C14A—C13A—C10A111.4 (2)
C15B—C13B—C10B111.11 (18)C14A—C13A—C15A111.1 (2)
C14B—C13B—C10B111.19 (19)C10A—C13A—C15A110.39 (18)
C15B—C13B—H13107.9C14A—C13A—H13A107.9
C14B—C13B—H13107.9C10A—C13A—H13A107.9
C10B—C13B—H13107.9C15A—C13A—H13A107.9
C13B—C14B—H14A109.5C13A—C14A—H14D109.5
C13B—C14B—H14B109.5C13A—C14A—H14E109.5
H14A—C14B—H14B109.5H14D—C14A—H14E109.5
C13B—C14B—H14C109.5C13A—C14A—H14F109.5
H14A—C14B—H14C109.5H14D—C14A—H14F109.5
H14B—C14B—H14C109.5H14E—C14A—H14F109.5
C13B—C15B—H15A109.5C13A—C15A—H15D109.5
C13B—C15B—H15B109.5C13A—C15A—H15E109.5
H15A—C15B—H15B109.5H15D—C15A—H15E109.5
C13B—C15B—H15C109.5C13A—C15A—H15F109.5
H15A—C15B—H15C109.5H15D—C15A—H15F109.5
H15B—C15B—H15C109.5H15E—C15A—H15F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11B—H11C···O82i0.982.423.243 (6)142
C11A—H11F···O84Aii0.982.433.240 (5)139
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H16N2O4
Mr288.30
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)11.7784 (7), 11.9072 (9), 12.4494 (10)
α, β, γ (°)107.928 (7), 112.834 (7), 104.536 (6)
V3)1387.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.49 × 0.22 × 0.14
Data collection
DiffractometerAgilent Xcalibur Sapphire1 (long-nozzle)
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
25504, 4881, 4084
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.152, 1.08
No. of reflections4881
No. of parameters425
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.26

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11B—H11C···O82i0.982.423.243 (6)142
C11A—H11F···O84Aii0.982.433.240 (5)139
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z.
 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  Web of Science CrossRef CAS Google Scholar
First citationDaoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDaunis, J., Jacquier, R., Lopez, H. & Viallefont, Ph. (1981). J. Chem. Res. pp. 639–649.  Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.  CrossRef CAS Web of Science Google Scholar
First citationLassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.  Web of Science CrossRef CAS Google Scholar
First citationPlattier, M. & Teisseire, P. (1974). Recherche, 19, 131–144.  CAS Google Scholar
First citationSbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds