organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­sulfanyl-1,2,4-triazolo[1,5-a]quinazolin-5(4H)-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 May 2012; accepted 14 May 2012; online 19 May 2012)

The non-H atoms of the title compound, C10H8N4OS, lie approximately in a common plane (r.m.s. deviation = 0.058 Å). In the crystal, two mol­ecules are linked across a center of inversion by a pair of N—H⋯N hydrogen bonds, forming a a dimer.

Related literature

For the synthesis, see: Al-Salahi & Geffken (2011[Al-Salahi, R. & Geffken, D. (2011). Synth. Commun. 41, 3512-3523.]). For a related compound, see: Al-Salahi et al. (2011[Al-Salahi, R., Detlef, G. & Ahmed, B. (2011). Acta Cryst. E67, o1861.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N4OS

  • Mr = 232.26

  • Monoclinic, P 21 /c

  • a = 10.4150 (1) Å

  • b = 5.0631 (1) Å

  • c = 18.6564 (3) Å

  • β = 96.857 (1)°

  • V = 976.76 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.81 mm−1

  • T = 294 K

  • 0.35 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.439, Tmax = 0.766

  • 15980 measured reflections

  • 2052 independent reflections

  • 1996 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.089

  • S = 1.05

  • 2052 reflections

  • 151 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N3i 0.85 (2) 2.05 (2) 2.896 (2) 174 (2)
Symmetry code: (i) -x, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (Scheme I) was synthesized from 2-hydrazinobenzoic acid and dimethyl N-cyanoimidodithiocarbonate; further reactions on the inherent lactam unit yielded other derivatives (Al-Salahi & Geffken, 2011). The non-H atoms of C10H8N4OS lie in a common plane (Fig. 1). Two molecules are linked across a center-of-inversion by N–H···N hydrogen bonds to form a dimer (Table 1). A related compound that has a benzyloxy group instead of the methylsulfanyl group also exists as a hydrogen-bonded dimer (Al-Salahi et al., 2011).

Related literature top

For the synthesis, see: Al-Salahi & Geffken (2011). For a related compound, see: Al-Salahi et al. (2011).

Experimental top

Under ice-cold conditions, 2-hydrazinobenzoic acid (10 mmol, 1.52 g) was added to a solution of dimethyl N-cyanodithioimidocarbonate (10 mmol, 1.46 g) in ethanol (20 ml). Triethylamine (30 mmol, 3.03 g) was added. The reaction mixture was stirred overnight at room temperature. Concentrated hydrochloric acid was added; the acidified mixture for heated for an hour. The mixture was poured into ice water; the solid that formed was collected and recrystallized from ethanol to give colorless crystals.

Refinement top

All H-atom were located in a difference Fourier map. Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.96 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C10H8N4OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Methylsulfanyl-1,2,4-triazolo[1,5-a]quinazolin-5(4H)-one top
Crystal data top
C10H8N4OSF(000) = 480
Mr = 232.26Dx = 1.579 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 10679 reflections
a = 10.4150 (1) Åθ = 4.3–76.7°
b = 5.0631 (1) ŵ = 2.81 mm1
c = 18.6564 (3) ÅT = 294 K
β = 96.857 (1)°Prism, colorless
V = 976.76 (3) Å30.35 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2052 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1996 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4041 pixels mm-1θmax = 76.9°, θmin = 4.3°
ω scanh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 66
Tmin = 0.439, Tmax = 0.766l = 2323
15980 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.2828P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2052 reflectionsΔρmax = 0.24 e Å3
151 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0089 (9)
Crystal data top
C10H8N4OSV = 976.76 (3) Å3
Mr = 232.26Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.4150 (1) ŵ = 2.81 mm1
b = 5.0631 (1) ÅT = 294 K
c = 18.6564 (3) Å0.35 × 0.15 × 0.10 mm
β = 96.857 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2052 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1996 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.766Rint = 0.033
15980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
2052 reflectionsΔρmin = 0.21 e Å3
151 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07695 (3)0.09449 (7)0.203762 (17)0.03356 (15)
O10.19589 (12)1.1102 (2)0.05498 (6)0.0527 (3)
N10.25468 (10)0.6522 (2)0.12100 (5)0.0284 (2)
N20.24857 (10)0.4808 (2)0.17833 (5)0.0299 (2)
N30.07817 (11)0.4211 (2)0.09036 (6)0.0327 (3)
N40.13609 (11)0.7645 (3)0.01027 (6)0.0365 (3)
C10.34851 (12)0.8433 (3)0.11483 (6)0.0282 (3)
C20.45835 (13)0.8685 (3)0.16496 (7)0.0331 (3)
H20.47160.75590.20450.040*
C30.54687 (13)1.0631 (3)0.15483 (8)0.0357 (3)
H30.62091.08030.18770.043*
C40.52720 (14)1.2342 (3)0.09627 (8)0.0381 (3)
H4A0.58671.36740.09080.046*
C50.41916 (13)1.2058 (3)0.04634 (7)0.0365 (3)
H50.40661.31950.00700.044*
C60.32892 (12)1.0088 (3)0.05434 (7)0.0311 (3)
C70.21660 (14)0.9725 (3)0.00156 (7)0.0359 (3)
C80.15228 (12)0.6134 (3)0.07104 (7)0.0303 (3)
C90.14125 (12)0.3490 (3)0.15648 (7)0.0291 (3)
C100.18994 (15)0.0881 (3)0.28453 (8)0.0443 (4)
H10A0.17130.05980.31380.066*
H10B0.18260.24870.31110.066*
H10C0.27630.07210.27180.066*
H40.072 (2)0.722 (4)0.0199 (11)0.062 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0327 (2)0.0351 (2)0.0319 (2)0.00273 (12)0.00017 (14)0.00156 (12)
O10.0552 (7)0.0637 (8)0.0356 (6)0.0047 (5)0.0093 (5)0.0204 (5)
N10.0297 (5)0.0316 (5)0.0225 (5)0.0011 (4)0.0028 (4)0.0021 (4)
N20.0315 (5)0.0323 (6)0.0249 (5)0.0010 (4)0.0010 (4)0.0025 (4)
N30.0308 (5)0.0381 (6)0.0273 (5)0.0004 (4)0.0038 (4)0.0003 (4)
N40.0364 (6)0.0439 (7)0.0263 (5)0.0022 (5)0.0087 (4)0.0045 (5)
C10.0298 (6)0.0300 (6)0.0246 (6)0.0029 (5)0.0018 (5)0.0023 (5)
C20.0345 (6)0.0356 (7)0.0275 (6)0.0012 (5)0.0031 (5)0.0007 (5)
C30.0328 (6)0.0399 (7)0.0328 (7)0.0007 (5)0.0020 (5)0.0048 (5)
C40.0394 (7)0.0364 (7)0.0387 (7)0.0050 (6)0.0051 (6)0.0020 (6)
C50.0428 (7)0.0356 (7)0.0312 (7)0.0012 (6)0.0049 (6)0.0046 (5)
C60.0335 (6)0.0335 (7)0.0258 (6)0.0039 (5)0.0015 (5)0.0000 (5)
C70.0385 (7)0.0413 (7)0.0269 (6)0.0034 (6)0.0008 (5)0.0035 (6)
C80.0310 (6)0.0340 (7)0.0245 (6)0.0030 (5)0.0029 (5)0.0009 (5)
C90.0291 (6)0.0314 (6)0.0260 (6)0.0027 (5)0.0000 (5)0.0023 (5)
C100.0442 (8)0.0510 (9)0.0354 (7)0.0051 (6)0.0041 (6)0.0098 (6)
Geometric parameters (Å, º) top
S1—C91.7402 (14)C1—C61.4008 (18)
S1—C101.7980 (15)C2—C31.378 (2)
O1—C71.2145 (18)C2—H20.9300
N1—C81.3443 (15)C3—C41.390 (2)
N1—N21.3848 (15)C3—H30.9300
N1—C11.3897 (17)C4—C51.3800 (19)
N2—C91.3237 (17)C4—H4A0.9300
N3—C81.3192 (18)C5—C61.391 (2)
N3—C91.3759 (16)C5—H50.9300
N4—C81.3614 (17)C6—C71.4828 (18)
N4—C71.3800 (19)C10—H10A0.9600
N4—H40.85 (2)C10—H10B0.9600
C1—C21.3942 (17)C10—H10C0.9600
C9—S1—C10100.67 (7)C4—C5—C6120.60 (13)
C8—N1—N2109.76 (10)C4—C5—H5119.7
C8—N1—C1123.49 (11)C6—C5—H5119.7
N2—N1—C1126.72 (10)C5—C6—C1118.70 (12)
C9—N2—N1101.13 (10)C5—C6—C7120.00 (12)
C8—N3—C9102.03 (11)C1—C6—C7121.28 (13)
C8—N4—C7123.00 (11)O1—C7—N4121.17 (13)
C8—N4—H4114.7 (15)O1—C7—C6123.63 (14)
C7—N4—H4122.3 (15)N4—C7—C6115.18 (12)
N1—C1—C2122.47 (12)N3—C8—N1111.11 (11)
N1—C1—C6116.55 (11)N3—C8—N4128.60 (11)
C2—C1—C6120.97 (12)N1—C8—N4120.29 (12)
C3—C2—C1118.83 (13)N2—C9—N3115.95 (12)
C3—C2—H2120.6N2—C9—S1125.39 (9)
C1—C2—H2120.6N3—C9—S1118.65 (10)
C2—C3—C4121.01 (13)S1—C10—H10A109.5
C2—C3—H3119.5S1—C10—H10B109.5
C4—C3—H3119.5H10A—C10—H10B109.5
C5—C4—C3119.85 (13)S1—C10—H10C109.5
C5—C4—H4A120.1H10A—C10—H10C109.5
C3—C4—H4A120.1H10B—C10—H10C109.5
C8—N1—N2—C90.85 (13)C5—C6—C7—O11.4 (2)
C1—N1—N2—C9179.10 (12)C1—C6—C7—O1179.72 (14)
C8—N1—C1—C2175.64 (12)C5—C6—C7—N4177.42 (13)
N2—N1—C1—C26.33 (19)C1—C6—C7—N40.88 (19)
C8—N1—C1—C63.12 (18)C9—N3—C8—N11.23 (14)
N2—N1—C1—C6174.91 (11)C9—N3—C8—N4178.64 (14)
N1—C1—C2—C3179.92 (12)N2—N1—C8—N31.39 (15)
C6—C1—C2—C31.2 (2)C1—N1—C8—N3179.71 (11)
C1—C2—C3—C40.7 (2)N2—N1—C8—N4178.50 (11)
C2—C3—C4—C51.6 (2)C1—N1—C8—N40.17 (19)
C3—C4—C5—C60.6 (2)C7—N4—C8—N3175.64 (14)
C4—C5—C6—C11.3 (2)C7—N4—C8—N14.2 (2)
C4—C5—C6—C7177.05 (13)N1—N2—C9—N30.07 (14)
N1—C1—C6—C5179.03 (12)N1—N2—C9—S1179.08 (9)
C2—C1—C6—C52.2 (2)C8—N3—C9—N20.71 (15)
N1—C1—C6—C72.66 (18)C8—N3—C9—S1179.93 (9)
C2—C1—C6—C7176.13 (12)C10—S1—C9—N22.50 (13)
C8—N4—C7—O1176.73 (14)C10—S1—C9—N3178.36 (11)
C8—N4—C7—C64.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N3i0.85 (2)2.05 (2)2.896 (2)174 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8N4OS
Mr232.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.4150 (1), 5.0631 (1), 18.6564 (3)
β (°) 96.857 (1)
V3)976.76 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.81
Crystal size (mm)0.35 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.439, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
15980, 2052, 1996
Rint0.033
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.089, 1.05
No. of reflections2052
No. of parameters151
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N3i0.85 (2)2.05 (2)2.896 (2)174 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank the Research Center of the College of Pharmacy College and Deanship of Scientific Research of King Saud University, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Salahi, R. & Geffken, D. (2011). Synth. Commun. 41, 3512–3523.  CAS Google Scholar
First citationAl-Salahi, R., Detlef, G. & Ahmed, B. (2011). Acta Cryst. E67, o1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds