organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­sulfonyl-1,2,4-triazolo[1,5-a]quinazolin-5(4H)-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 May 2012; accepted 14 May 2012; online 19 May 2012)

The triazoloquinazoline fused-ring system of the title compound, C10H8N4O3S, is essentially planar (r.m.s. deviation = 0.027 Å). In the crystal, adjacent mol­ecules are linked by N—H⋯Osulfon­yl hydrogen bonds, generating a helical chain running along the b axis.

Related literature

For the synthesis of the precursor, see: Al-Salahi & Geffken (2011[Al-Salahi, R. & Geffken, D. (2011). Synth. Commun. 41, 3512-3523.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N4O3S

  • Mr = 264.26

  • Monoclinic, P 21

  • a = 9.6216 (2) Å

  • b = 4.9206 (1) Å

  • c = 12.1623 (3) Å

  • β = 106.628 (2)°

  • V = 551.73 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.71 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.02 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.] Tmin = 0.613, Tmax = 0.948

  • 9640 measured reflections

  • 2304 independent reflections

  • 2237 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.04

  • 2304 reflections

  • 168 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1007 Friedel pairs

  • Flack parameter: 0.00 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 (1) 2.23 (1) 3.072 (2) 160 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-(Methylsulfanyl)-[1,2,4]triazolo[1,5-a]quinazolin-5-one was synthesized from 2-hydrazinobenzoic acid and dimethyl N-cyanoimidodithiocarbonate; further reactions on the inherent lactam unit yielded other derivatives (Al-Salahi & Geffken, 2011). In the present study, this compound is oxided by hydrogen peroxide. The triazoloquinazoline fused-ring system of C10H8N4O3S (Scheme I, Fig. 1) is planar. Adjacent molecules are linked by an NH···Osulfonyl hydrogen bond to generate a helical chain running along the b-axis of the monoclinic unit cell (Fig. 2, Table 1).

Related literature top

For the synthesis of the precursor, see: Al-Salahi & Geffken (2011).

Experimental top

Under ice-cold conditions, 2-hydrazinobenzoic acid (10 mmol, 1.52 g) was added to a solution of dimethyl N-cyanodithioimidocarbonate (10 mmol, 1.46 g) in ethanol (20 ml). Triethylamine (30 mmol, 3.03 g) was added. The reaction mixture was stirred overnight at room temperature. Concentrated hydrochloric acid was added; the acidified mixture for heated for an hour. The mixture was poured into ice water; the solid that formed was collected and recrystallized from ethanol to give colorless crystals of 2-(methylsulfanyl)-[1,2,4]triazolo[1,5-a]quinazolin-5-one. The procedure was that reported earlier (Al-Salahi & Geffken, 2011).

To the boiling mixture of 2-methylsulfanyl-[1,2,4]triazolo[1,5-a]quinazolin-5-one (1 mmol, 0.23 g) in glacial acetic acid (5 ml) was added hydrogen peroxide. Colorless crystals of the oxidized product were obtained when the solution was allowed to cool.

Refinement top

All H-atom were located in a difference Fourier map. Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.96 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was refined isotropically with a distance restraint of N–H 0.88±0.01 Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C10H8N4O3S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
2-Methylsulfonyl-1,2,4-triazolo[1,5-a]quinazolin-5(4H)-one top
Crystal data top
C10H8N4O3SF(000) = 272
Mr = 264.26Dx = 1.591 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 6133 reflections
a = 9.6216 (2) Åθ = 3.8–76.5°
b = 4.9206 (1) ŵ = 2.71 mm1
c = 12.1623 (3) ÅT = 294 K
β = 106.628 (2)°Plate, colorless
V = 551.73 (2) Å30.20 × 0.10 × 0.02 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2304 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2237 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 3.8°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 66
Tmin = 0.613, Tmax = 0.948l = 1415
9640 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.056P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2304 reflectionsΔρmax = 0.15 e Å3
168 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 1007 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
C10H8N4O3SV = 551.73 (2) Å3
Mr = 264.26Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.6216 (2) ŵ = 2.71 mm1
b = 4.9206 (1) ÅT = 294 K
c = 12.1623 (3) Å0.20 × 0.10 × 0.02 mm
β = 106.628 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2304 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2237 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.948Rint = 0.025
9640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Δρmax = 0.15 e Å3
S = 1.04Δρmin = 0.26 e Å3
2304 reflectionsAbsolute structure: Flack (1983), 1007 Friedel pairs
168 parametersAbsolute structure parameter: 0.00 (2)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24294 (4)0.00109 (9)0.18198 (3)0.04202 (13)
O10.8628 (2)0.7880 (6)0.13678 (16)0.0903 (8)
O20.24690 (17)0.1892 (3)0.09276 (13)0.0566 (4)
O30.23731 (18)0.0963 (4)0.29138 (14)0.0645 (4)
N10.67906 (18)0.4984 (5)0.12477 (13)0.0542 (4)
H10.677 (3)0.451 (7)0.0548 (13)0.086 (9)*
N20.56362 (13)0.4813 (4)0.27059 (11)0.0354 (3)
N30.45055 (15)0.3499 (3)0.29552 (13)0.0392 (3)
N40.47068 (16)0.2190 (4)0.12045 (12)0.0436 (4)
C10.7743 (2)0.6953 (5)0.18009 (17)0.0528 (5)
C20.75983 (17)0.7852 (4)0.29235 (15)0.0396 (4)
C30.85191 (19)0.9855 (5)0.35516 (16)0.0478 (4)
H30.92221.06340.32620.057*
C40.8387 (2)1.0679 (4)0.45993 (18)0.0536 (5)
H40.89991.20210.50120.064*
C50.7349 (2)0.9521 (5)0.50437 (17)0.0534 (5)
H50.72731.00950.57530.064*
C60.6429 (2)0.7530 (5)0.44484 (16)0.0472 (4)
H60.57430.67330.47520.057*
C70.65534 (17)0.6748 (3)0.33865 (14)0.0356 (3)
C80.57227 (18)0.3991 (4)0.16704 (14)0.0389 (4)
C90.40156 (18)0.2013 (4)0.20289 (14)0.0382 (4)
C100.1035 (2)0.2349 (4)0.12929 (18)0.0500 (5)
H10A0.01160.14420.11420.075*
H10B0.11290.31360.05960.075*
H10C0.10910.37550.18510.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0482 (2)0.0365 (2)0.0405 (2)0.01197 (18)0.01137 (15)0.00488 (17)
O10.0929 (13)0.131 (2)0.0609 (10)0.0698 (14)0.0448 (10)0.0294 (12)
O20.0684 (9)0.0428 (8)0.0593 (9)0.0175 (7)0.0197 (7)0.0074 (7)
O30.0741 (10)0.0654 (10)0.0541 (8)0.0176 (8)0.0183 (7)0.0194 (7)
N10.0573 (9)0.0762 (11)0.0343 (7)0.0280 (10)0.0216 (6)0.0137 (9)
N20.0342 (6)0.0410 (7)0.0312 (6)0.0058 (6)0.0100 (5)0.0011 (6)
N30.0387 (7)0.0435 (8)0.0372 (7)0.0075 (6)0.0138 (6)0.0003 (6)
N40.0456 (8)0.0505 (9)0.0342 (7)0.0125 (7)0.0107 (6)0.0036 (6)
C10.0521 (10)0.0692 (14)0.0385 (9)0.0229 (10)0.0150 (8)0.0051 (9)
C20.0359 (8)0.0446 (9)0.0360 (8)0.0031 (7)0.0064 (6)0.0006 (7)
C30.0431 (8)0.0498 (10)0.0471 (9)0.0101 (9)0.0073 (7)0.0003 (10)
C40.0515 (11)0.0499 (13)0.0516 (11)0.0093 (8)0.0022 (9)0.0136 (8)
C50.0555 (10)0.0585 (15)0.0452 (9)0.0048 (10)0.0126 (8)0.0181 (9)
C60.0476 (9)0.0554 (12)0.0412 (9)0.0052 (9)0.0169 (7)0.0098 (9)
C70.0342 (7)0.0369 (8)0.0332 (7)0.0004 (6)0.0055 (6)0.0014 (6)
C80.0389 (8)0.0471 (9)0.0296 (8)0.0095 (7)0.0079 (6)0.0017 (7)
C90.0392 (8)0.0380 (8)0.0360 (8)0.0059 (7)0.0084 (6)0.0027 (7)
C100.0407 (9)0.0498 (11)0.0585 (11)0.0090 (8)0.0127 (8)0.0067 (9)
Geometric parameters (Å, º) top
S1—O31.4296 (16)C1—C21.479 (3)
S1—O21.4421 (16)C2—C71.395 (2)
S1—C101.744 (2)C2—C31.397 (3)
S1—C91.7726 (17)C3—C41.377 (3)
O1—C11.211 (2)C3—H30.9300
N1—C81.364 (2)C4—C51.387 (3)
N1—C11.370 (3)C4—H40.9300
N1—H10.877 (10)C5—C61.379 (3)
N2—C81.348 (2)C5—H50.9300
N2—N31.3718 (19)C6—C71.385 (2)
N2—C71.397 (2)C6—H60.9300
N3—C91.312 (2)C10—H10A0.9600
N4—C81.321 (2)C10—H10B0.9600
N4—C91.355 (2)C10—H10C0.9600
O3—S1—O2119.93 (11)C3—C4—H4119.8
O3—S1—C10109.44 (11)C5—C4—H4119.8
O2—S1—C10109.57 (10)C6—C5—C4120.88 (19)
O3—S1—C9108.24 (9)C6—C5—H5119.6
O2—S1—C9105.18 (9)C4—C5—H5119.6
C10—S1—C9103.09 (9)C5—C6—C7118.24 (18)
C8—N1—C1122.54 (16)C5—C6—H6120.9
C8—N1—H1117 (2)C7—C6—H6120.9
C1—N1—H1120 (2)C6—C7—C2122.18 (17)
C8—N2—N3109.28 (14)C6—C7—N2122.22 (16)
C8—N2—C7124.09 (14)C2—C7—N2115.60 (15)
N3—N2—C7126.61 (13)N4—C8—N2111.47 (16)
C9—N3—N2100.69 (13)N4—C8—N1128.56 (17)
C8—N4—C9100.67 (15)N2—C8—N1119.95 (15)
O1—C1—N1120.47 (19)N3—C9—N4117.88 (15)
O1—C1—C2123.5 (2)N3—C9—S1121.05 (13)
N1—C1—C2116.01 (16)N4—C9—S1120.94 (13)
C7—C2—C3118.12 (18)S1—C10—H10A109.5
C7—C2—C1121.66 (16)S1—C10—H10B109.5
C3—C2—C1120.22 (17)H10A—C10—H10B109.5
C4—C3—C2120.10 (18)S1—C10—H10C109.5
C4—C3—H3119.9H10A—C10—H10C109.5
C2—C3—H3119.9H10B—C10—H10C109.5
C3—C4—C5120.47 (18)
C8—N2—N3—C90.34 (19)C8—N2—C7—C20.5 (2)
C7—N2—N3—C9178.37 (16)N3—N2—C7—C2178.05 (17)
C8—N1—C1—O1176.2 (3)C9—N4—C8—N20.2 (2)
C8—N1—C1—C23.1 (3)C9—N4—C8—N1178.8 (2)
O1—C1—C2—C7179.4 (3)N3—N2—C8—N40.1 (2)
N1—C1—C2—C70.1 (3)C7—N2—C8—N4178.68 (16)
O1—C1—C2—C30.6 (4)N3—N2—C8—N1178.63 (19)
N1—C1—C2—C3179.9 (2)C7—N2—C8—N12.6 (3)
C7—C2—C3—C40.4 (3)C1—N1—C8—N4177.0 (2)
C1—C2—C3—C4179.7 (2)C1—N1—C8—N24.5 (3)
C2—C3—C4—C50.4 (3)N2—N3—C9—N40.5 (2)
C3—C4—C5—C60.1 (3)N2—N3—C9—S1175.38 (13)
C4—C5—C6—C71.0 (3)C8—N4—C9—N30.5 (2)
C5—C6—C7—C21.8 (3)C8—N4—C9—S1175.42 (14)
C5—C6—C7—N2177.84 (18)O3—S1—C9—N334.09 (18)
C3—C2—C7—C61.5 (3)O2—S1—C9—N3163.43 (15)
C1—C2—C7—C6178.53 (19)C10—S1—C9—N381.78 (17)
C3—C2—C7—N2178.19 (17)O3—S1—C9—N4150.12 (17)
C1—C2—C7—N21.8 (3)O2—S1—C9—N420.79 (18)
C8—N2—C7—C6179.84 (18)C10—S1—C9—N494.00 (18)
N3—N2—C7—C61.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.88 (1)2.23 (1)3.072 (2)160 (3)
Symmetry code: (i) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H8N4O3S
Mr264.26
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)9.6216 (2), 4.9206 (1), 12.1623 (3)
β (°) 106.628 (2)
V3)551.73 (2)
Z2
Radiation typeCu Kα
µ (mm1)2.71
Crystal size (mm)0.20 × 0.10 × 0.02
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.613, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
9640, 2304, 2237
Rint0.025
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.04
No. of reflections2304
No. of parameters168
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.26
Absolute structureFlack (1983), 1007 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.88 (1)2.23 (1)3.072 (2)160 (3)
Symmetry code: (i) x+1, y+1/2, z.
 

Acknowledgements

We thank the Research Center of the College of Pharmacy College and Deanship of Scientific Research of King Saud University, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Salahi, R. & Geffken, D. (2011). Synth. Commun. 41, 3512–3523.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds