organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-methyl­sulfonyl-1,2,4-triazolo[1,5-a]quinazoline

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 May 2012; accepted 14 May 2012; online 19 May 2012)

The triazoloquinazole fused-ring system of the title compound, C10H7ClN4O2S, is essentially planar (r.m.s. deviation = 0.009 Å). In the methyl­sulfonyl substituent, the two S—O bonds are of equal length [1.402 (2) Å]. In the crystal, adjacent mol­ecules inter­act weakly through Cl⋯N contacts [ca 3.197 (2) Å].

Related literature

For the synthesis of the precursor, see: Al-Salahi & Geffken (2011[Al-Salahi, R. & Geffken, D. (2011). Synth. Commun. , 41, 3512-3523.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7ClN4O2S

  • Mr = 282.71

  • Monoclinic, P 21 /c

  • a = 12.6386 (3) Å

  • b = 10.7464 (3) Å

  • c = 8.6317 (3) Å

  • β = 102.459 (3)°

  • V = 1144.74 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.69 mm−1

  • T = 294 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.] Tmin = 0.334, Tmax = 0.454

  • 10130 measured reflections

  • 2383 independent reflections

  • 2168 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.113

  • S = 1.03

  • 2383 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In this study, 2-(methylsulfanyl)-[1,2,4]triazolo[1,5-a]quinazolin-5-one (Al-Salahi & Geffken, 2011) was first treated with phosphorus oxychloride to yield the chlorinated compound, whose sulfur linkage was then oxidized by hydrogen peroxide. Chlorination took place at the carbon atom bearing the ketonic oxygen in the title compound (Scheme I). The triazoloquinazole fused-ring system is planar; in the methanesulfonyl substitutent, the two S–O bonds are of equal length (1.402 (2) Å). Adjacent molecules interact weakly through Cl···N contacts (ca. 3.20 Å).

Related literature top

For the synthesis of the precursor, see: Al-Salahi & Geffken (2011).

Experimental top

Under ice-cold conditions, 2-hydrazinobenzoic acid (10 mmol, 1.52 g) was added to a solution of dimethyl N-cyanodithioimidocarbonate (10 mmol, 1.46 g) in ethanol (20 ml). Triethylamine (30 mmol, 3.03 g) was added. The reaction mixture was stirred overnight at room temperature. Concentrated hydrochloric acid was added; the acidified mixture for heated for an hour. The mixture was poured into ice water; the solid that formed was collected and recrystallized from ethanol to give colorless crystals of 2-(methylsulfanyl)-[1,2,4]triazolo[1,5-a]quinazolin-5-one. The procedure was that reported earlier (Al-Salahi & Geffken, 2011).

The above compound (1 mmol, 0.232 g) was heated with phosphorus oxychloride (1 ml) in benzene (10 ml) for 2 h. The solvent was evaporated and the residue was treated with saturated potassium carbonate to give the chlorinated [1,2,4]triazoloquinazoline.

To the boiling mixture of chlorinated [1,2,4]triazoloquinazoline (1 mmol, 0.25 g) in glacial acetic acid (5 ml) was added hydrogen peroxide. Colorless crystals of the oxidized product were obtained when the solution was allowed to cool.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.96 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C10H7ClN4O2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
5-Chloro-2-methylsulfonyl-1,2,4-triazolo[1,5-a]quinazoline top
Crystal data top
C10H7ClN4O2SF(000) = 576
Mr = 282.71Dx = 1.640 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 4932 reflections
a = 12.6386 (3) Åθ = 3.6–76.5°
b = 10.7464 (3) ŵ = 4.69 mm1
c = 8.6317 (3) ÅT = 294 K
β = 102.459 (3)°Prism, colorless
V = 1144.74 (6) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2383 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2168 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 3.6°
ω scanh = 1512
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1312
Tmin = 0.334, Tmax = 0.454l = 1010
10130 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0707P)2 + 0.3878P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2383 reflectionsΔρmax = 0.27 e Å3
165 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (6)
Crystal data top
C10H7ClN4O2SV = 1144.74 (6) Å3
Mr = 282.71Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.6386 (3) ŵ = 4.69 mm1
b = 10.7464 (3) ÅT = 294 K
c = 8.6317 (3) Å0.30 × 0.25 × 0.20 mm
β = 102.459 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2383 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2168 reflections with I > 2σ(I)
Tmin = 0.334, Tmax = 0.454Rint = 0.025
10130 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
2383 reflectionsΔρmin = 0.40 e Å3
165 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45911 (4)0.43675 (5)0.75576 (7)0.05379 (19)
S10.88914 (4)0.86294 (4)0.54205 (6)0.04933 (19)
O10.82482 (19)0.94586 (18)0.4366 (2)0.0828 (7)
O20.9760 (2)0.8096 (2)0.4887 (4)0.1080 (10)
N10.58990 (12)0.60611 (16)0.6966 (2)0.0445 (4)
N20.74566 (12)0.56267 (13)0.59166 (18)0.0365 (3)
N30.82959 (12)0.62371 (15)0.55072 (19)0.0404 (3)
N40.71600 (13)0.75914 (15)0.6396 (2)0.0449 (4)
C10.57202 (14)0.48755 (18)0.6911 (2)0.0412 (4)
C20.63661 (14)0.39385 (17)0.6353 (2)0.0388 (4)
C30.61415 (16)0.26559 (18)0.6285 (3)0.0467 (4)
H3A0.55390.23530.66200.056*
C40.68132 (17)0.18528 (19)0.5721 (3)0.0518 (5)
H40.66630.10050.56800.062*
C50.77164 (17)0.22883 (19)0.5209 (3)0.0498 (5)
H50.81580.17270.48260.060*
C60.79670 (16)0.35396 (17)0.5261 (2)0.0431 (4)
H60.85730.38290.49240.052*
C70.72873 (14)0.43547 (16)0.5832 (2)0.0368 (4)
C80.67944 (14)0.64414 (16)0.6455 (2)0.0394 (4)
C90.80569 (15)0.74008 (17)0.5817 (2)0.0408 (4)
C100.9299 (2)0.9347 (3)0.7255 (3)0.0708 (8)
H10A0.97861.00170.71710.106*
H10B0.96620.87520.80180.106*
H10C0.86760.96680.75910.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0401 (3)0.0539 (3)0.0736 (4)0.00281 (18)0.0258 (2)0.0039 (2)
S10.0629 (3)0.0383 (3)0.0549 (3)0.0106 (2)0.0306 (2)0.00469 (19)
O10.1214 (18)0.0528 (10)0.0643 (11)0.0205 (10)0.0021 (11)0.0108 (8)
O20.1003 (16)0.0681 (13)0.189 (3)0.0195 (11)0.1040 (18)0.0260 (15)
N10.0364 (7)0.0418 (8)0.0590 (10)0.0016 (6)0.0187 (7)0.0013 (7)
N20.0350 (7)0.0340 (7)0.0427 (8)0.0004 (5)0.0135 (6)0.0003 (6)
N30.0413 (8)0.0373 (8)0.0470 (8)0.0019 (6)0.0194 (6)0.0006 (6)
N40.0438 (8)0.0358 (8)0.0602 (10)0.0010 (6)0.0224 (7)0.0011 (7)
C10.0319 (8)0.0437 (10)0.0497 (10)0.0000 (7)0.0126 (7)0.0031 (8)
C20.0352 (8)0.0378 (9)0.0435 (9)0.0012 (7)0.0088 (7)0.0013 (7)
C30.0438 (9)0.0404 (10)0.0566 (11)0.0060 (8)0.0124 (8)0.0012 (8)
C40.0567 (12)0.0351 (10)0.0645 (13)0.0044 (8)0.0154 (10)0.0030 (8)
C50.0534 (11)0.0378 (10)0.0606 (12)0.0038 (8)0.0177 (9)0.0055 (8)
C60.0418 (9)0.0392 (9)0.0512 (10)0.0004 (7)0.0165 (8)0.0006 (7)
C70.0361 (8)0.0349 (9)0.0396 (9)0.0000 (6)0.0082 (7)0.0005 (7)
C80.0358 (8)0.0372 (9)0.0475 (10)0.0026 (7)0.0140 (7)0.0007 (7)
C90.0422 (9)0.0357 (9)0.0480 (10)0.0018 (7)0.0176 (8)0.0005 (7)
C100.0859 (18)0.0761 (17)0.0471 (12)0.0406 (14)0.0070 (11)0.0010 (11)
Geometric parameters (Å, º) top
Cl1—C11.7288 (19)C2—C31.406 (3)
S1—O11.402 (2)C2—C71.408 (2)
S1—O21.402 (2)C3—C41.371 (3)
S1—C101.737 (2)C3—H3A0.9300
S1—C91.7689 (19)C4—C51.391 (3)
N1—C11.293 (3)C4—H40.9300
N1—C81.363 (2)C5—C61.380 (3)
N2—N31.357 (2)C5—H50.9300
N2—C81.360 (2)C6—C71.389 (3)
N2—C71.383 (2)C6—H60.9300
N3—C91.327 (2)C10—H10A0.9600
N4—C81.324 (2)C10—H10B0.9600
N4—C91.349 (2)C10—H10C0.9600
C1—C21.443 (3)
O1—S1—O2115.62 (17)C5—C4—H4119.5
O1—S1—C10109.07 (14)C6—C5—C4121.05 (19)
O2—S1—C10112.43 (17)C6—C5—H5119.5
O1—S1—C9108.29 (11)C4—C5—H5119.5
O2—S1—C9107.48 (11)C5—C6—C7118.07 (18)
C10—S1—C9103.11 (10)C5—C6—H6121.0
C1—N1—C8115.74 (16)C7—C6—H6121.0
N3—N2—C8110.54 (14)N2—C7—C6122.78 (17)
N3—N2—C7125.77 (15)N2—C7—C2115.21 (16)
C8—N2—C7123.68 (15)C6—C7—C2122.01 (17)
C9—N3—N2100.26 (14)N4—C8—N2109.99 (16)
C8—N4—C9101.57 (15)N4—C8—N1127.82 (17)
N1—C1—C2126.35 (17)N2—C8—N1122.18 (16)
N1—C1—Cl1116.69 (14)N3—C9—N4117.62 (16)
C2—C1—Cl1116.95 (14)N3—C9—S1119.54 (14)
C3—C2—C7118.11 (17)N4—C9—S1122.82 (14)
C3—C2—C1125.06 (17)S1—C10—H10A109.5
C7—C2—C1116.83 (16)S1—C10—H10B109.5
C4—C3—C2119.81 (18)H10A—C10—H10B109.5
C4—C3—H3A120.1S1—C10—H10C109.5
C2—C3—H3A120.1H10A—C10—H10C109.5
C3—C4—C5120.94 (19)H10B—C10—H10C109.5
C3—C4—H4119.5
C8—N2—N3—C90.9 (2)C3—C2—C7—C60.0 (3)
C7—N2—N3—C9179.96 (17)C1—C2—C7—C6179.65 (17)
C8—N1—C1—C20.6 (3)C9—N4—C8—N20.5 (2)
C8—N1—C1—Cl1179.85 (14)C9—N4—C8—N1179.41 (19)
N1—C1—C2—C3179.0 (2)N3—N2—C8—N40.9 (2)
Cl1—C1—C2—C30.5 (3)C7—N2—C8—N4179.93 (17)
N1—C1—C2—C70.7 (3)N3—N2—C8—N1178.95 (16)
Cl1—C1—C2—C7179.81 (13)C7—N2—C8—N10.2 (3)
C7—C2—C3—C40.0 (3)C1—N1—C8—N4179.7 (2)
C1—C2—C3—C4179.63 (19)C1—N1—C8—N20.2 (3)
C2—C3—C4—C50.2 (3)N2—N3—C9—N40.7 (2)
C3—C4—C5—C60.4 (3)N2—N3—C9—S1177.85 (13)
C4—C5—C6—C70.3 (3)C8—N4—C9—N30.2 (2)
N3—N2—C7—C61.7 (3)C8—N4—C9—S1178.32 (15)
C8—N2—C7—C6179.27 (18)O1—S1—C9—N3122.07 (19)
N3—N2—C7—C2178.86 (16)O2—S1—C9—N33.5 (2)
C8—N2—C7—C20.1 (3)C10—S1—C9—N3122.44 (19)
C5—C6—C7—N2179.21 (19)O1—S1—C9—N456.4 (2)
C5—C6—C7—C20.2 (3)O2—S1—C9—N4178.1 (2)
C3—C2—C7—N2179.43 (17)C10—S1—C9—N459.1 (2)
C1—C2—C7—N20.2 (2)

Experimental details

Crystal data
Chemical formulaC10H7ClN4O2S
Mr282.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.6386 (3), 10.7464 (3), 8.6317 (3)
β (°) 102.459 (3)
V3)1144.74 (6)
Z4
Radiation typeCu Kα
µ (mm1)4.69
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.334, 0.454
No. of measured, independent and
observed [I > 2σ(I)] reflections
10130, 2383, 2168
Rint0.025
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.113, 1.03
No. of reflections2383
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.40

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Research Center of the College of Pharmacy College and Deanship of Scientific Research of King Saud University, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Salahi, R. & Geffken, D. (2011). Synth. Commun. , 41, 3512–3523.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds