organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phen­­oxy-1,2,4-triazolo[1,5-a]quinazol­in-5(4H)-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, Institute of Pharmacy, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 May 2012; accepted 14 May 2012; online 19 May 2012)

The triazoloquinazole ring system in the title compound, C15H10N4O2 is approximately planar (r.m.s. deviation = 0.035 Å). The phenyl ring of the phen­oxy substitutent is aligned at 59.3 (1)° with respect to this ring system. In the crystal, two mol­ecules are linked about a center of inversion by a pair of N—H⋯O hydrogen bonds, generating a dimer.

Related literature

The synthesis was based on theat of a similar compound; see: Al-Salahi & Geffken (2011[Al-Salahi, R. & Geffken, D. (2011). Synth. Commun. 41, 3512-3523.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10N4O2

  • Mr = 278.27

  • Triclinic, [P \overline 1]

  • a = 5.6985 (2) Å

  • b = 8.4328 (4) Å

  • c = 13.4322 (7) Å

  • α = 74.087 (4)°

  • β = 86.623 (4)°

  • γ = 89.284 (4)°

  • V = 619.66 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.86 mm−1

  • T = 294 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.783, Tmax = 0.919

  • 10219 measured reflections

  • 2570 independent reflections

  • 2408 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.03

  • 2570 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (1) 1.90 (1) 2.775 (1) 174 (1)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The procedure for the synthesis of 2-(methylsulfanyl)-[1,2,4]triazolo[1,5-a]quinazolin-5-one uses dimethyl N-cyanodithioimidocarbonate as one of the reactants (Al-Salahi & Geffken, 2011). The title phenoxy-substituted analog (Scheme I) is obtained with diphenyl N-cyanodithioimidocarbonate instead. The triazoloquinazole fused-ring system of C15H10N4O2 is planar. The phenyl ring of the phenoxy substitutent is aligned at 59.3 (1) ° with respect to this ring system. Two molecules are linked about a center of inversion by N–H···O hydrogen bonds to generate a dimer (Table 1).

Related literature top

The synthesis was based on theat of a similar compound; see: Al-Salahi & Geffken (2011).

Experimental top

Under ice-cold conditions, 2-hydrazinobenzoic acid (10 mmol, 1.52 g) was added to a solution of diphenyl N-cyanodithioimidocarbonate (10 mmol, 2.38 g) in ethanol (20 ml). Triethylamine (30 mmol, 3.03 g) was added. The reaction mixture was stirred overnight at room temperature. Concentrated hydrochloric acid was added; the acidified mixture for heated for an hour. The mixture was poured into ice water; the solid that formed was collected and recrystallized from ethanol to give colorless crystals of 2-phenoxy-[1,2,4]triazolo[1,5-a]quinazolin-5-one. The procedure was based on that reported for 2-(methylsulfanyl)-[1,2,4]triazolo[1,5-a]quinazolin-5-one (Al-Salahi & Geffken, 2011).

Refinement top

All H-atom were located in a difference Fourier map. Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was refined isotropically with a distance restraint of N–H 0.88±0.01 Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anitropic displacement ellipsoid plot (Barbour, 2001) of C15H10N4O2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Phenoxy-1,2,4-triazolo[1,5-a]quinazolin-5(4H)-one top
Crystal data top
C15H10N4O2Z = 2
Mr = 278.27F(000) = 288
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.6985 (2) ÅCell parameters from 6342 reflections
b = 8.4328 (4) Åθ = 5.5–76.8°
c = 13.4322 (7) ŵ = 0.86 mm1
α = 74.087 (4)°T = 294 K
β = 86.623 (4)°Prism, colorless
γ = 89.284 (4)°0.30 × 0.30 × 0.10 mm
V = 619.66 (5) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2570 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2408 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4041 pixels mm-1θmax = 77.0°, θmin = 5.5°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1010
Tmin = 0.783, Tmax = 0.919l = 1616
10219 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.101P]
where P = (Fo2 + 2Fc2)/3
2570 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C15H10N4O2γ = 89.284 (4)°
Mr = 278.27V = 619.66 (5) Å3
Triclinic, P1Z = 2
a = 5.6985 (2) ÅCu Kα radiation
b = 8.4328 (4) ŵ = 0.86 mm1
c = 13.4322 (7) ÅT = 294 K
α = 74.087 (4)°0.30 × 0.30 × 0.10 mm
β = 86.623 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2570 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2408 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.919Rint = 0.021
10219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
2570 reflectionsΔρmin = 0.17 e Å3
194 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.99321 (13)0.65595 (10)0.38673 (6)0.0434 (2)
O20.05541 (15)0.63656 (11)0.73718 (7)0.0575 (3)
N10.72791 (14)0.61117 (11)0.52356 (7)0.0368 (2)
H10.815 (2)0.5287 (14)0.5565 (10)0.052 (4)*
N20.39197 (14)0.77669 (10)0.51740 (7)0.0357 (2)
N30.19077 (15)0.78851 (11)0.57764 (7)0.0407 (2)
N40.42432 (15)0.57551 (11)0.66105 (7)0.0392 (2)
C10.80686 (17)0.69434 (12)0.42497 (8)0.0357 (2)
C20.65586 (18)0.82833 (13)0.36907 (8)0.0371 (2)
C30.7175 (2)0.91440 (15)0.26696 (9)0.0478 (3)
H3A0.85410.88740.23400.057*
C40.5757 (2)1.03986 (17)0.21472 (10)0.0559 (3)
H40.61641.09700.14630.067*
C50.3716 (2)1.08128 (15)0.26419 (10)0.0509 (3)
H50.27901.16740.22850.061*
C60.30459 (19)0.99747 (14)0.36443 (9)0.0423 (3)
H60.16731.02500.39670.051*
C70.44778 (18)0.86996 (13)0.41660 (8)0.0354 (2)
C80.52273 (17)0.64985 (12)0.56919 (8)0.0342 (2)
C90.22415 (18)0.66579 (14)0.66014 (8)0.0400 (2)
C100.0660 (2)0.49527 (15)0.82080 (9)0.0453 (3)
C110.1218 (2)0.38863 (17)0.83833 (10)0.0524 (3)
H110.24370.40750.79340.063*
C120.1261 (3)0.25285 (19)0.92387 (11)0.0621 (4)
H120.25140.17900.93660.075*
C130.0546 (3)0.22606 (19)0.99069 (11)0.0664 (4)
H130.05120.13461.04820.080*
C140.2391 (3)0.3353 (2)0.97164 (11)0.0663 (4)
H140.36030.31751.01690.080*
C150.2473 (2)0.47089 (19)0.88648 (11)0.0567 (3)
H150.37290.54450.87360.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0337 (4)0.0480 (4)0.0435 (4)0.0121 (3)0.0022 (3)0.0057 (3)
O20.0464 (5)0.0600 (5)0.0506 (5)0.0199 (4)0.0148 (4)0.0065 (4)
N10.0287 (4)0.0391 (5)0.0391 (5)0.0091 (3)0.0027 (3)0.0053 (4)
N20.0288 (4)0.0379 (5)0.0377 (5)0.0075 (3)0.0014 (3)0.0064 (4)
N30.0319 (4)0.0454 (5)0.0410 (5)0.0097 (4)0.0023 (4)0.0066 (4)
N40.0330 (4)0.0414 (5)0.0391 (5)0.0073 (3)0.0000 (4)0.0048 (4)
C10.0299 (5)0.0376 (5)0.0387 (5)0.0045 (4)0.0023 (4)0.0091 (4)
C20.0323 (5)0.0376 (5)0.0395 (5)0.0055 (4)0.0028 (4)0.0076 (4)
C30.0434 (6)0.0502 (6)0.0433 (6)0.0114 (5)0.0036 (5)0.0038 (5)
C40.0558 (7)0.0581 (7)0.0420 (6)0.0153 (6)0.0037 (5)0.0044 (5)
C50.0482 (7)0.0486 (6)0.0481 (7)0.0159 (5)0.0059 (5)0.0000 (5)
C60.0356 (5)0.0414 (6)0.0461 (6)0.0098 (4)0.0036 (4)0.0058 (5)
C70.0313 (5)0.0357 (5)0.0379 (5)0.0035 (4)0.0036 (4)0.0077 (4)
C80.0280 (5)0.0360 (5)0.0377 (5)0.0052 (4)0.0042 (4)0.0085 (4)
C90.0322 (5)0.0442 (6)0.0401 (5)0.0066 (4)0.0025 (4)0.0069 (4)
C100.0416 (6)0.0515 (6)0.0373 (6)0.0114 (5)0.0062 (4)0.0053 (5)
C110.0428 (6)0.0679 (8)0.0431 (6)0.0044 (5)0.0020 (5)0.0104 (6)
C120.0593 (8)0.0625 (8)0.0578 (8)0.0047 (6)0.0123 (6)0.0082 (6)
C130.0724 (9)0.0666 (9)0.0466 (7)0.0142 (7)0.0078 (6)0.0043 (6)
C140.0580 (8)0.0876 (11)0.0464 (7)0.0160 (7)0.0100 (6)0.0061 (7)
C150.0468 (7)0.0675 (8)0.0525 (7)0.0017 (6)0.0024 (5)0.0112 (6)
Geometric parameters (Å, º) top
O1—C11.2307 (12)C4—C51.3938 (17)
O2—C91.3435 (13)C4—H40.9300
O2—C101.3990 (14)C5—C61.3721 (17)
N1—C81.3656 (13)C5—H50.9300
N1—C11.3699 (13)C6—C71.3947 (14)
N1—H10.878 (9)C6—H60.9300
N2—C81.3477 (12)C10—C151.3753 (18)
N2—N31.3824 (12)C10—C111.3738 (18)
N2—C71.3874 (14)C11—C121.3813 (19)
N3—C91.3139 (14)C11—H110.9300
N4—C81.3164 (14)C12—C131.382 (2)
N4—C91.3622 (13)C12—H120.9300
C1—C21.4722 (14)C13—C141.372 (2)
C2—C31.3910 (16)C13—H130.9300
C2—C71.4000 (14)C14—C151.377 (2)
C3—C41.3794 (17)C14—H140.9300
C3—H3A0.9300C15—H150.9300
C9—O2—C10119.95 (9)N2—C7—C6122.26 (10)
C8—N1—C1122.69 (8)N2—C7—C2116.34 (9)
C8—N1—H1120.6 (9)C6—C7—C2121.40 (10)
C1—N1—H1116.7 (9)N4—C8—N2111.92 (9)
C8—N2—N3109.16 (8)N4—C8—N1128.29 (9)
C8—N2—C7123.88 (9)N2—C8—N1119.77 (9)
N3—N2—C7126.79 (8)N3—C9—O2117.36 (9)
C9—N3—N2100.32 (8)N3—C9—N4118.04 (9)
C8—N4—C9100.54 (8)O2—C9—N4124.59 (10)
O1—C1—N1120.70 (9)C15—C10—C11121.75 (12)
O1—C1—C2123.08 (10)C15—C10—O2121.40 (12)
N1—C1—C2116.22 (9)C11—C10—O2116.68 (11)
C3—C2—C7118.94 (10)C10—C11—C12118.73 (12)
C3—C2—C1120.02 (10)C10—C11—H11120.6
C7—C2—C1121.04 (10)C12—C11—H11120.6
C4—C3—C2119.93 (11)C11—C12—C13120.38 (14)
C4—C3—H3A120.0C11—C12—H12119.8
C2—C3—H3A120.0C13—C12—H12119.8
C3—C4—C5120.17 (12)C14—C13—C12119.61 (13)
C3—C4—H4119.9C14—C13—H13120.2
C5—C4—H4119.9C12—C13—H13120.2
C6—C5—C4121.30 (11)C13—C14—C15120.89 (13)
C6—C5—H5119.4C13—C14—H14119.6
C4—C5—H5119.4C15—C14—H14119.6
C5—C6—C7118.26 (11)C10—C15—C14118.62 (13)
C5—C6—H6120.9C10—C15—H15120.7
C7—C6—H6120.9C14—C15—H15120.7
C8—N2—N3—C90.14 (11)C9—N4—C8—N1177.91 (10)
C7—N2—N3—C9175.59 (10)N3—N2—C8—N40.50 (12)
C8—N1—C1—O1179.78 (9)C7—N2—C8—N4176.12 (9)
C8—N1—C1—C20.77 (15)N3—N2—C8—N1178.16 (8)
O1—C1—C2—C32.27 (17)C7—N2—C8—N12.54 (16)
N1—C1—C2—C3177.17 (10)C1—N1—C8—N4177.01 (10)
O1—C1—C2—C7178.59 (10)C1—N1—C8—N21.40 (15)
N1—C1—C2—C71.98 (15)N2—N3—C9—O2178.60 (10)
C7—C2—C3—C40.81 (19)N2—N3—C9—N40.27 (13)
C1—C2—C3—C4179.98 (12)C10—O2—C9—N3171.70 (11)
C2—C3—C4—C50.4 (2)C10—O2—C9—N47.09 (18)
C3—C4—C5—C61.2 (2)C8—N4—C9—N30.55 (13)
C4—C5—C6—C70.7 (2)C8—N4—C9—O2178.22 (11)
C8—N2—C7—C6178.15 (10)C9—O2—C10—C1563.17 (17)
N3—N2—C7—C63.32 (17)C9—O2—C10—C11121.42 (12)
C8—N2—C7—C21.29 (15)C15—C10—C11—C120.6 (2)
N3—N2—C7—C2176.12 (9)O2—C10—C11—C12175.96 (11)
C5—C6—C7—N2178.86 (10)C10—C11—C12—C130.5 (2)
C5—C6—C7—C20.55 (17)C11—C12—C13—C140.0 (2)
C3—C2—C7—N2178.15 (9)C12—C13—C14—C150.3 (2)
C1—C2—C7—N21.00 (15)C11—C10—C15—C140.2 (2)
C3—C2—C7—C61.29 (17)O2—C10—C15—C14175.40 (12)
C1—C2—C7—C6179.55 (10)C13—C14—C15—C100.2 (2)
C9—N4—C8—N20.60 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (1)1.90 (1)2.775 (1)174 (1)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10N4O2
Mr278.27
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)5.6985 (2), 8.4328 (4), 13.4322 (7)
α, β, γ (°)74.087 (4), 86.623 (4), 89.284 (4)
V3)619.66 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.783, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
10219, 2570, 2408
Rint0.021
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.03
No. of reflections2570
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (1)1.901 (9)2.775 (1)174 (1)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

We thank the Research Center of the College of Pharmacy College and Deanship of Scientific Research of King Saud University, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Salahi, R. & Geffken, D. (2011). Synth. Commun. 41, 3512–3523.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds