organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Prop-2-en-1-yl)-2-sulfanyl­­idene-1,2,3,4-tetra­hydro­quinazolin-4-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 May 2012; accepted 14 May 2012; online 19 May 2012)

The tetra­hydro­quinazoline fused-ring system of the title compound, C11H10N2OS, is approximately planar (r.m.s. deviation = 0.019 Å). In the crystal, adjacent mol­ecules are linked by N—H⋯O hydrogen bonds, forming a chain running along the b axis.

Related literature

For the synthesis, see: Shiau et al. (1990[Shiau, C. Y., Chern, J. W., Liu, K. C., Chan, C. H., Yen, M. H., Cheng, M. C. & Wang, Y. (1990). J. Heterocycl. Chem. 27, 1467-1472.]); Vassilev & Vassilev (2007[Vassilev, G. N. & Vassilev, N. G. (2007). Oxid. Commun. 30, 228-235.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2OS

  • Mr = 218.27

  • Monoclinic, P 21 /c

  • a = 8.9823 (3) Å

  • b = 13.7271 (3) Å

  • c = 8.3137 (2) Å

  • β = 92.882 (3)°

  • V = 1023.79 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.59 mm−1

  • T = 294 K

  • 0.30 × 0.30 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.511, Tmax = 0.927

  • 4913 measured reflections

  • 2128 independent reflections

  • 1855 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.06

  • 2128 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 2.15 (1) 2.977 (2) 160 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The compound, 3-benzyl-8-methoxy-2-sulfanylidene-1,2,3,4-tetrahydroquinazolin-4-one, was previously synthesized for a study of its antimicrobial activity. The related 2-sulfanylidene-1,2,3,4-tetrahydroquinazolin-4-one (Scheme I) exhibits cytokinin activity (Vassilev & Vassilev, 2007). The synthesis described in the present study is a more straightforward procedure than those previously reported (Shiau et al., 1990; Vassilev & Vassilev, 2007). The tetrahydroquinazoline fused-ring of C11H10N2OS is planar (Fig. 1). Adjacent molecules are linked by an N–H···O hydrogen to form a chain running along the b-axis of the monoclinic unit cell (Table 1).

Related literature top

For the synthesis, see: Shiau et al. (1990); Vassilev & Vassilev (2007).

Experimental top

Allyl isothiocyanate (10 mmol, 0.99 g), 2-amino-5-methylbenzoic acid (10 mmol, 1.51 g) and triethylamine (5 mmol, 0.51 g) in ethanol (30 ml) was heated for two hours. The mixture was poured into ice-cold water. The solid was collected and recrystallized from ethanol to give colorless crystals.

Refinement top

All H-atom were located in a difference Fourier map. Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atom was refined isotropically with a distance restraint of N–H 0.88±0.01 Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C11H10N2OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bond chain structure.
3-(Prop-2-en-1-yl)-2-sulfanylidene-1,2,3,4-tetrahydroquinazolin-4-one top
Crystal data top
C11H10N2OSF(000) = 456
Mr = 218.27Dx = 1.416 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2303 reflections
a = 8.9823 (3) Åθ = 3.2–76.4°
b = 13.7271 (3) ŵ = 2.59 mm1
c = 8.3137 (2) ÅT = 294 K
β = 92.882 (3)°Prism, colorless
V = 1023.79 (5) Å30.30 × 0.30 × 0.03 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2128 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1855 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 5.9°
ω scanh = 1110
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1710
Tmin = 0.511, Tmax = 0.927l = 108
4913 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.1451P]
where P = (Fo2 + 2Fc2)/3
2128 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.38 e Å3
Crystal data top
C11H10N2OSV = 1023.79 (5) Å3
Mr = 218.27Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.9823 (3) ŵ = 2.59 mm1
b = 13.7271 (3) ÅT = 294 K
c = 8.3137 (2) Å0.30 × 0.30 × 0.03 mm
β = 92.882 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2128 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1855 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.927Rint = 0.023
4913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
2128 reflectionsΔρmin = 0.38 e Å3
140 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77201 (5)0.32274 (3)0.07911 (5)0.04374 (16)
O10.54446 (14)0.00715 (8)0.22169 (16)0.0488 (3)
N10.53208 (14)0.29760 (9)0.24120 (16)0.0337 (3)
H10.530 (2)0.3608 (7)0.239 (2)0.052 (6)*
N20.64135 (14)0.15416 (9)0.15732 (15)0.0317 (3)
C10.64308 (17)0.25505 (10)0.16333 (17)0.0317 (3)
C20.53764 (17)0.09571 (11)0.23320 (18)0.0341 (3)
C30.42514 (16)0.14680 (11)0.32027 (18)0.0320 (3)
C40.31809 (19)0.09589 (12)0.4035 (2)0.0404 (4)
H40.32000.02820.40680.048*
C50.2099 (2)0.14630 (14)0.4804 (2)0.0458 (4)
H50.13790.11250.53450.055*
C60.20775 (19)0.24781 (14)0.4776 (2)0.0445 (4)
H60.13390.28130.52930.053*
C70.3140 (2)0.29896 (11)0.3990 (2)0.0393 (4)
H70.31270.36670.39820.047*
C80.42342 (16)0.24836 (11)0.32063 (17)0.0311 (3)
C90.76129 (18)0.10324 (12)0.07515 (18)0.0376 (4)
H9A0.79070.14200.01550.045*
H9B0.72420.04120.03400.045*
C100.89456 (19)0.08610 (13)0.1881 (2)0.0433 (4)
H100.93000.13820.25050.052*
C110.9639 (2)0.00289 (15)0.2043 (3)0.0568 (5)
H11A0.93130.05060.14360.068*
H11B1.04590.00290.27650.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0415 (3)0.0325 (2)0.0586 (3)0.00599 (15)0.01623 (19)0.00349 (16)
O10.0559 (7)0.0207 (5)0.0712 (8)0.0015 (5)0.0180 (6)0.0008 (5)
N10.0363 (7)0.0203 (6)0.0448 (7)0.0004 (5)0.0068 (6)0.0020 (5)
N20.0324 (6)0.0236 (6)0.0393 (6)0.0015 (5)0.0055 (5)0.0004 (5)
C10.0328 (7)0.0252 (6)0.0369 (7)0.0002 (5)0.0014 (6)0.0009 (5)
C20.0358 (8)0.0252 (7)0.0414 (8)0.0004 (6)0.0014 (6)0.0025 (6)
C30.0319 (7)0.0254 (7)0.0387 (7)0.0019 (6)0.0015 (6)0.0016 (5)
C40.0406 (9)0.0305 (7)0.0505 (9)0.0053 (6)0.0072 (7)0.0044 (6)
C50.0414 (9)0.0461 (9)0.0511 (9)0.0086 (7)0.0141 (7)0.0039 (7)
C60.0383 (9)0.0460 (9)0.0502 (9)0.0042 (7)0.0124 (7)0.0006 (7)
C70.0407 (9)0.0301 (7)0.0477 (9)0.0047 (6)0.0086 (7)0.0007 (6)
C80.0308 (7)0.0265 (7)0.0358 (7)0.0001 (5)0.0009 (6)0.0020 (5)
C90.0408 (9)0.0316 (8)0.0413 (8)0.0052 (6)0.0103 (7)0.0015 (6)
C100.0382 (8)0.0422 (9)0.0502 (9)0.0042 (7)0.0092 (7)0.0025 (7)
C110.0431 (10)0.0497 (10)0.0774 (13)0.0049 (8)0.0004 (9)0.0047 (9)
Geometric parameters (Å, º) top
S1—C11.6663 (15)C5—C61.394 (3)
O1—C21.2212 (18)C5—H50.9300
N1—C11.3487 (19)C6—C71.376 (2)
N1—C81.3822 (19)C6—H60.9300
N1—H10.869 (9)C7—C81.392 (2)
N2—C11.3858 (17)C7—H70.9300
N2—C21.4031 (19)C9—C101.502 (2)
N2—C91.4799 (18)C9—H9A0.9700
C2—C31.453 (2)C9—H9B0.9700
C3—C81.394 (2)C10—C111.305 (3)
C3—C41.399 (2)C10—H100.9300
C4—C51.377 (2)C11—H11A0.9300
C4—H40.9300C11—H11B0.9300
C1—N1—C8125.05 (13)C7—C6—C5120.60 (15)
C1—N1—H1116.1 (14)C7—C6—H6119.7
C8—N1—H1118.8 (14)C5—C6—H6119.7
C1—N2—C2124.18 (12)C6—C7—C8119.37 (15)
C1—N2—C9118.79 (12)C6—C7—H7120.3
C2—N2—C9116.91 (12)C8—C7—H7120.3
N1—C1—N2116.28 (13)N1—C8—C7120.78 (14)
N1—C1—S1120.42 (11)N1—C8—C3118.67 (13)
N2—C1—S1123.29 (11)C7—C8—C3120.55 (14)
O1—C2—N2119.80 (14)N2—C9—C10111.18 (12)
O1—C2—C3123.95 (14)N2—C9—H9A109.4
N2—C2—C3116.24 (13)C10—C9—H9A109.4
C8—C3—C4119.36 (14)N2—C9—H9B109.4
C8—C3—C2119.46 (13)C10—C9—H9B109.4
C4—C3—C2121.18 (14)H9A—C9—H9B108.0
C5—C4—C3119.84 (15)C11—C10—C9124.25 (18)
C5—C4—H4120.1C11—C10—H10117.9
C3—C4—H4120.1C9—C10—H10117.9
C4—C5—C6120.25 (15)C10—C11—H11A120.0
C4—C5—H5119.9C10—C11—H11B120.0
C6—C5—H5119.9H11A—C11—H11B120.0
C8—N1—C1—N23.4 (2)C2—C3—C4—C5177.85 (15)
C8—N1—C1—S1177.21 (12)C3—C4—C5—C60.9 (3)
C2—N2—C1—N13.4 (2)C4—C5—C6—C70.4 (3)
C9—N2—C1—N1179.29 (13)C5—C6—C7—C80.6 (3)
C2—N2—C1—S1177.16 (11)C1—N1—C8—C7179.38 (14)
C9—N2—C1—S11.30 (19)C1—N1—C8—C30.9 (2)
C1—N2—C2—O1179.93 (14)C6—C7—C8—N1179.70 (15)
C9—N2—C2—O14.0 (2)C6—C7—C8—C30.5 (2)
C1—N2—C2—C31.0 (2)C4—C3—C8—N1178.43 (14)
C9—N2—C2—C3176.97 (12)C2—C3—C8—N11.7 (2)
O1—C2—C3—C8177.37 (15)C4—C3—C8—C71.8 (2)
N2—C2—C3—C81.6 (2)C2—C3—C8—C7178.01 (14)
O1—C2—C3—C42.4 (2)C1—N2—C9—C1086.69 (17)
N2—C2—C3—C4178.57 (14)C2—N2—C9—C1089.46 (16)
C8—C3—C4—C52.0 (2)N2—C9—C10—C11132.15 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)2.15 (1)2.977 (2)160 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H10N2OS
Mr218.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.9823 (3), 13.7271 (3), 8.3137 (2)
β (°) 92.882 (3)
V3)1023.79 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.59
Crystal size (mm)0.30 × 0.30 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.511, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
4913, 2128, 1855
Rint0.023
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.06
No. of reflections2128
No. of parameters140
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.38

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)2.15 (1)2.977 (2)160 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank the Research Center of the College of Pharmacy College and Deanship of Scientific Research of King Saud University, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiau, C. Y., Chern, J. W., Liu, K. C., Chan, C. H., Yen, M. H., Cheng, M. C. & Wang, Y. (1990). J. Heterocycl. Chem. 27, 1467–1472.  CrossRef CAS Google Scholar
First citationVassilev, G. N. & Vassilev, N. G. (2007). Oxid. Commun. 30, 228–235.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds