organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Carbonyl­dipyridinium bis­­(perchlorate)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn

(Received 13 May 2012; accepted 18 May 2012; online 26 May 2012)

In the title molecular salt, C11H10N2O2+·2ClO4, the complete cation is generated by crystallographic twofold symmetry. The dihedral angle between the pyridyl rings is 67.07 (7)°. The crystal structure features N—H⋯Cl hydrogen bonds, forming sheets in the ab plane.

Related literature

For the dipyridyl ketone dication, see: Crook & McElvain (1930[Crook, K. E. & McElvain, S. M. (1930). J. Am. Chem. Soc.. 52, 4006-4011.]); Favaro et al. (1990[Favaro, G., Romani, A. & Poggi, G. (1990). Z. Phys. Chem. 168, 55-63.]). For metal complexes of di-3-pyridyl ketone, see: Chen & Mak (2005[Chen, X.-D. & Mak, T. C. W. (2005). J. Mol. Struct.. 743, 1-6.]); Chen et al. (2009[Chen, X.-D., Wan, C.-Q., Sung, H. H.-Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518-6528.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2O2+·2ClO4

  • Mr = 385.11

  • Orthorhombic, P 21 21 2

  • a = 8.5315 (3) Å

  • b = 15.1772 (6) Å

  • c = 5.6107 (2) Å

  • V = 726.50 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.835, Tmax = 0.905

  • 6343 measured reflections

  • 1285 independent reflections

  • 1235 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.10

  • 1285 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 503 Friedel pairs

  • Flack parameter: 0.10 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H7⋯O2 0.86 2.22 2.907 (3) 136
N1i—H7i⋯O4 0.86 2.34 2.967 (2) 130
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Di-3-pyridyl ketone is an extraordinary ligand within the family of basic building blocks for construction of metal-organic complexes with intriguing architectures (Chen & Mak, 2005; Chen et al., 2009). However, the crystal structure of salts with the dipyridyl ketone dication is rarely reported until now. Several related literatures discussed the relationship between the acid-base properties of the dipyridyl ketone isomers and the positions of the nitrogen atoms on the rings, which were investigated by spectrophotometric measurements (Crook & McElvain, 1930; Favaro et al., 1990). In the present context, we report the structure of diprotonated di-3-pyridyl ketone perchlorate salt (Fig. 1). The two pyridyl rings exhibit a dihedral angle of 67.07 (7)°. The crystal structure is stabilized by N—H···(perchlorate) hydrogen bonds forming sheets in the ab plane.

Related literature top

For the dipyridyl ketone dication, see: Crook & McElvain (1930); Favaro et al. (1990). For metal complexes of di-3-pyridyl ketone, see: Chen & Mak (2005); Chen et al. (2009).

Experimental top

Di-3-pyridyl ketone was prepared following the literature procedure of Chen & Mak (2005). Copper(II) perchlorate (37 mg, 0.1 mmol) was heated with di-3-pyridyl ketone (18 mg, 0.1 mmol) in acetonitrile (5 ml) at 373 K for 24 h. After cooling to room temperature, the precipitate which had formed was filtrated off. Crystals of the title salt was deposited by slow evaporation of the filtrate, which can be viewed as the product of the perchloric acid from the copper(II) perchlorate and di-3-pyridyl ketone (yield 11.5 mg, 30% based on di-3-pyridyl ketone).

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title salt; some H atoms have been omitted for clarity. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (i) -x + 1, -y, z.]
3,3'-Carbonyldipyridinium diperchlorate top
Crystal data top
C11H10N2O2+·2ClO4Dx = 1.760 Mg m3
Mr = 385.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 256 reflections
a = 8.5315 (3) Åθ = 2.3–26.2°
b = 15.1772 (6) ŵ = 0.50 mm1
c = 5.6107 (2) ÅT = 296 K
V = 726.50 (5) Å3Block, colorless
Z = 20.40 × 0.30 × 0.20 mm
F(000) = 392
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1285 independent reflections
Radiation source: fine-focus sealed tube1235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.835, Tmax = 0.905k = 1816
6343 measured reflectionsl = 66
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.4015P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.34 e Å3
1285 reflectionsΔρmin = 0.21 e Å3
111 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.019 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 503 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.10 (10)
Crystal data top
C11H10N2O2+·2ClO4V = 726.50 (5) Å3
Mr = 385.11Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 8.5315 (3) ŵ = 0.50 mm1
b = 15.1772 (6) ÅT = 296 K
c = 5.6107 (2) Å0.40 × 0.30 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1285 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1235 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.905Rint = 0.021
6343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.34 e Å3
S = 1.10Δρmin = 0.21 e Å3
1285 reflectionsAbsolute structure: Flack (1983), 503 Friedel pairs
111 parametersAbsolute structure parameter: 0.10 (10)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1257 (3)0.13417 (17)0.4051 (5)0.0416 (6)
H10.04080.16420.34020.050*
C20.1807 (3)0.05924 (17)0.2988 (4)0.0372 (6)
H20.13400.03810.16040.045*
C30.3062 (3)0.01520 (14)0.3985 (4)0.0317 (5)
H30.34490.03570.32740.038*
C40.3745 (3)0.04756 (14)0.6063 (4)0.0287 (5)
C50.3158 (3)0.12400 (15)0.7048 (4)0.0334 (5)
H50.36090.14740.84190.040*
C60.50000.00000.7390 (6)0.0308 (7)
N10.1948 (2)0.16399 (13)0.6032 (4)0.0386 (5)
H70.15910.21130.66770.046*
O10.50000.00000.9548 (4)0.0431 (6)
Cl10.30796 (6)0.32979 (4)1.13244 (10)0.03518 (19)
O20.2552 (3)0.31908 (15)0.8930 (4)0.0720 (7)
O30.1779 (3)0.33349 (15)1.2909 (4)0.0647 (6)
O40.4064 (2)0.25628 (13)1.1946 (4)0.0539 (6)
O50.3940 (3)0.41004 (13)1.1460 (5)0.0622 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0318 (12)0.0470 (14)0.0461 (16)0.0021 (11)0.0001 (12)0.0095 (13)
C20.0350 (13)0.0444 (14)0.0323 (12)0.0082 (12)0.0038 (11)0.0022 (10)
C30.0339 (11)0.0321 (12)0.0293 (11)0.0041 (10)0.0037 (12)0.0010 (10)
C40.0293 (11)0.0299 (11)0.0269 (11)0.0019 (9)0.0043 (11)0.0025 (10)
C50.0348 (12)0.0336 (12)0.0319 (12)0.0013 (11)0.0021 (11)0.0022 (9)
C60.0346 (18)0.0289 (17)0.0288 (18)0.0017 (15)0.0000.000
N10.0378 (10)0.0327 (10)0.0452 (12)0.0081 (10)0.0046 (10)0.0007 (10)
O10.0499 (15)0.0537 (16)0.0259 (13)0.0073 (14)0.0000.000
Cl10.0335 (3)0.0328 (3)0.0393 (3)0.0005 (2)0.0001 (3)0.0034 (3)
O20.0990 (17)0.0660 (14)0.0511 (12)0.0026 (13)0.0214 (12)0.0129 (12)
O30.0620 (13)0.0551 (12)0.0770 (15)0.0139 (12)0.0314 (11)0.0109 (12)
O40.0398 (10)0.0402 (10)0.0817 (16)0.0070 (8)0.0062 (10)0.0008 (10)
O50.0604 (12)0.0403 (11)0.0858 (16)0.0138 (9)0.0075 (14)0.0029 (12)
Geometric parameters (Å, º) top
C1—N11.337 (3)C5—N11.327 (3)
C1—C21.368 (4)C5—H50.9300
C1—H10.9300C6—O11.210 (4)
C2—C31.381 (4)C6—C4i1.491 (3)
C2—H20.9300N1—H70.8600
C3—C41.393 (3)Cl1—O31.423 (2)
C3—H30.9300Cl1—O51.4242 (19)
C4—C51.379 (3)Cl1—O21.426 (2)
C4—C61.491 (3)Cl1—O41.439 (2)
N1—C1—C2119.5 (2)C4—C5—H5120.2
N1—C1—H1120.2O1—C6—C4119.97 (14)
C2—C1—H1120.2O1—C6—C4i119.97 (14)
C1—C2—C3119.5 (2)C4—C6—C4i120.1 (3)
C1—C2—H2120.3C5—N1—C1123.1 (2)
C3—C2—H2120.3C5—N1—H7118.5
C2—C3—C4119.5 (2)C1—N1—H7118.5
C2—C3—H3120.2O3—Cl1—O5109.56 (14)
C4—C3—H3120.2O3—Cl1—O2110.31 (16)
C5—C4—C3118.7 (2)O5—Cl1—O2108.08 (15)
C5—C4—C6117.9 (2)O3—Cl1—O4109.53 (13)
C3—C4—C6123.2 (2)O5—Cl1—O4110.44 (12)
N1—C5—C4119.7 (2)O2—Cl1—O4108.90 (14)
N1—C5—H5120.2
N1—C1—C2—C30.4 (4)C5—C4—C6—O134.0 (2)
C1—C2—C3—C40.2 (3)C3—C4—C6—O1141.03 (17)
C2—C3—C4—C51.0 (3)C5—C4—C6—C4i146.0 (2)
C2—C3—C4—C6174.0 (2)C3—C4—C6—C4i38.97 (17)
C3—C4—C5—N11.2 (3)C4—C5—N1—C10.6 (4)
C6—C4—C5—N1174.1 (2)C2—C1—N1—C50.2 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H7···O20.862.222.907 (3)136
N1ii—H7ii···O40.862.342.967 (2)130
Symmetry code: (ii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC11H10N2O2+·2ClO4
Mr385.11
Crystal system, space groupOrthorhombic, P21212
Temperature (K)296
a, b, c (Å)8.5315 (3), 15.1772 (6), 5.6107 (2)
V3)726.50 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.835, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
6343, 1285, 1235
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.10
No. of reflections1285
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.21
Absolute structureFlack (1983), 503 Friedel pairs
Absolute structure parameter0.10 (10)

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H7···O20.862.222.907 (3)136.3
N1i—H7i···O40.862.342.967 (2)129.8
Symmetry code: (i) x+1/2, y+1/2, z+2.
 

Acknowledgements

We thank the State Key Laboratory of Structural Chemistry of China (Reference No. 20110001) and the Beijing Natural Science Foundation (grant No. 2022011) for financial support.

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-D. & Mak, T. C. W. (2005). J. Mol. Struct.. 743, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X.-D., Wan, C.-Q., Sung, H. H.-Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518–6528.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCrook, K. E. & McElvain, S. M. (1930). J. Am. Chem. Soc.. 52, 4006–4011.  CrossRef CAS Google Scholar
First citationFavaro, G., Romani, A. & Poggi, G. (1990). Z. Phys. Chem. 168, 55–63.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds