organic compounds
3,3′-Carbonyldipyridinium bis(perchlorate)
aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn
In the title molecular salt, C11H10N2O2+·2ClO4−, the complete cation is generated by crystallographic twofold symmetry. The dihedral angle between the pyridyl rings is 67.07 (7)°. The features N—H⋯Cl hydrogen bonds, forming sheets in the ab plane.
Related literature
For the dipyridyl ketone dication, see: Crook & McElvain (1930); Favaro et al. (1990). For metal complexes of di-3-pyridyl ketone, see: Chen & Mak (2005); Chen et al. (2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812022817/bt5923sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812022817/bt5923Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812022817/bt5923Isup3.cml
Di-3-pyridyl ketone was prepared following the literature procedure of Chen & Mak (2005). Copper(II) perchlorate (37 mg, 0.1 mmol) was heated with di-3-pyridyl ketone (18 mg, 0.1 mmol) in acetonitrile (5 ml) at 373 K for 24 h. After cooling to room temperature, the precipitate which had formed was filtrated off. Crystals of the title salt was deposited by slow evaporation of the filtrate, which can be viewed as the product of the perchloric acid from the copper(II) perchlorate and di-3-pyridyl ketone (yield 11.5 mg, 30% based on di-3-pyridyl ketone).
H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).
Data collection: APEX2 (Bruker, 2007); cell
APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The atom-numbering scheme of the title salt; some H atoms have been omitted for clarity. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (i) -x + 1, -y, z.] |
C11H10N2O2+·2ClO4− | Dx = 1.760 Mg m−3 |
Mr = 385.11 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P21212 | Cell parameters from 256 reflections |
a = 8.5315 (3) Å | θ = 2.3–26.2° |
b = 15.1772 (6) Å | µ = 0.50 mm−1 |
c = 5.6107 (2) Å | T = 296 K |
V = 726.50 (5) Å3 | Block, colorless |
Z = 2 | 0.40 × 0.30 × 0.20 mm |
F(000) = 392 |
Bruker APEXII CCD area-detector diffractometer | 1285 independent reflections |
Radiation source: fine-focus sealed tube | 1235 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −10→10 |
Tmin = 0.835, Tmax = 0.905 | k = −18→16 |
6343 measured reflections | l = −6→6 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0315P)2 + 0.4015P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.073 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.34 e Å−3 |
1285 reflections | Δρmin = −0.21 e Å−3 |
111 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.019 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 503 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.10 (10) |
C11H10N2O2+·2ClO4− | V = 726.50 (5) Å3 |
Mr = 385.11 | Z = 2 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 8.5315 (3) Å | µ = 0.50 mm−1 |
b = 15.1772 (6) Å | T = 296 K |
c = 5.6107 (2) Å | 0.40 × 0.30 × 0.20 mm |
Bruker APEXII CCD area-detector diffractometer | 1285 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1235 reflections with I > 2σ(I) |
Tmin = 0.835, Tmax = 0.905 | Rint = 0.021 |
6343 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.073 | Δρmax = 0.34 e Å−3 |
S = 1.10 | Δρmin = −0.21 e Å−3 |
1285 reflections | Absolute structure: Flack (1983), 503 Friedel pairs |
111 parameters | Absolute structure parameter: 0.10 (10) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1257 (3) | 0.13417 (17) | 0.4051 (5) | 0.0416 (6) | |
H1 | 0.0408 | 0.1642 | 0.3402 | 0.050* | |
C2 | 0.1807 (3) | 0.05924 (17) | 0.2988 (4) | 0.0372 (6) | |
H2 | 0.1340 | 0.0381 | 0.1604 | 0.045* | |
C3 | 0.3062 (3) | 0.01520 (14) | 0.3985 (4) | 0.0317 (5) | |
H3 | 0.3449 | −0.0357 | 0.3274 | 0.038* | |
C4 | 0.3745 (3) | 0.04756 (14) | 0.6063 (4) | 0.0287 (5) | |
C5 | 0.3158 (3) | 0.12400 (15) | 0.7048 (4) | 0.0334 (5) | |
H5 | 0.3609 | 0.1474 | 0.8419 | 0.040* | |
C6 | 0.5000 | 0.0000 | 0.7390 (6) | 0.0308 (7) | |
N1 | 0.1948 (2) | 0.16399 (13) | 0.6032 (4) | 0.0386 (5) | |
H7 | 0.1591 | 0.2113 | 0.6677 | 0.046* | |
O1 | 0.5000 | 0.0000 | 0.9548 (4) | 0.0431 (6) | |
Cl1 | 0.30796 (6) | 0.32979 (4) | 1.13244 (10) | 0.03518 (19) | |
O2 | 0.2552 (3) | 0.31908 (15) | 0.8930 (4) | 0.0720 (7) | |
O3 | 0.1779 (3) | 0.33349 (15) | 1.2909 (4) | 0.0647 (6) | |
O4 | 0.4064 (2) | 0.25628 (13) | 1.1946 (4) | 0.0539 (6) | |
O5 | 0.3940 (3) | 0.41004 (13) | 1.1460 (5) | 0.0622 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0318 (12) | 0.0470 (14) | 0.0461 (16) | 0.0021 (11) | −0.0001 (12) | 0.0095 (13) |
C2 | 0.0350 (13) | 0.0444 (14) | 0.0323 (12) | −0.0082 (12) | −0.0038 (11) | 0.0022 (10) |
C3 | 0.0339 (11) | 0.0321 (12) | 0.0293 (11) | −0.0041 (10) | 0.0037 (12) | −0.0010 (10) |
C4 | 0.0293 (11) | 0.0299 (11) | 0.0269 (11) | −0.0019 (9) | 0.0043 (11) | 0.0025 (10) |
C5 | 0.0348 (12) | 0.0336 (12) | 0.0319 (12) | −0.0013 (11) | 0.0021 (11) | −0.0022 (9) |
C6 | 0.0346 (18) | 0.0289 (17) | 0.0288 (18) | −0.0017 (15) | 0.000 | 0.000 |
N1 | 0.0378 (10) | 0.0327 (10) | 0.0452 (12) | 0.0081 (10) | 0.0046 (10) | −0.0007 (10) |
O1 | 0.0499 (15) | 0.0537 (16) | 0.0259 (13) | 0.0073 (14) | 0.000 | 0.000 |
Cl1 | 0.0335 (3) | 0.0328 (3) | 0.0393 (3) | −0.0005 (2) | 0.0001 (3) | −0.0034 (3) |
O2 | 0.0990 (17) | 0.0660 (14) | 0.0511 (12) | 0.0026 (13) | −0.0214 (12) | −0.0129 (12) |
O3 | 0.0620 (13) | 0.0551 (12) | 0.0770 (15) | 0.0139 (12) | 0.0314 (11) | 0.0109 (12) |
O4 | 0.0398 (10) | 0.0402 (10) | 0.0817 (16) | 0.0070 (8) | −0.0062 (10) | −0.0008 (10) |
O5 | 0.0604 (12) | 0.0403 (11) | 0.0858 (16) | −0.0138 (9) | −0.0075 (14) | 0.0029 (12) |
C1—N1 | 1.337 (3) | C5—N1 | 1.327 (3) |
C1—C2 | 1.368 (4) | C5—H5 | 0.9300 |
C1—H1 | 0.9300 | C6—O1 | 1.210 (4) |
C2—C3 | 1.381 (4) | C6—C4i | 1.491 (3) |
C2—H2 | 0.9300 | N1—H7 | 0.8600 |
C3—C4 | 1.393 (3) | Cl1—O3 | 1.423 (2) |
C3—H3 | 0.9300 | Cl1—O5 | 1.4242 (19) |
C4—C5 | 1.379 (3) | Cl1—O2 | 1.426 (2) |
C4—C6 | 1.491 (3) | Cl1—O4 | 1.439 (2) |
N1—C1—C2 | 119.5 (2) | C4—C5—H5 | 120.2 |
N1—C1—H1 | 120.2 | O1—C6—C4 | 119.97 (14) |
C2—C1—H1 | 120.2 | O1—C6—C4i | 119.97 (14) |
C1—C2—C3 | 119.5 (2) | C4—C6—C4i | 120.1 (3) |
C1—C2—H2 | 120.3 | C5—N1—C1 | 123.1 (2) |
C3—C2—H2 | 120.3 | C5—N1—H7 | 118.5 |
C2—C3—C4 | 119.5 (2) | C1—N1—H7 | 118.5 |
C2—C3—H3 | 120.2 | O3—Cl1—O5 | 109.56 (14) |
C4—C3—H3 | 120.2 | O3—Cl1—O2 | 110.31 (16) |
C5—C4—C3 | 118.7 (2) | O5—Cl1—O2 | 108.08 (15) |
C5—C4—C6 | 117.9 (2) | O3—Cl1—O4 | 109.53 (13) |
C3—C4—C6 | 123.2 (2) | O5—Cl1—O4 | 110.44 (12) |
N1—C5—C4 | 119.7 (2) | O2—Cl1—O4 | 108.90 (14) |
N1—C5—H5 | 120.2 | ||
N1—C1—C2—C3 | 0.4 (4) | C5—C4—C6—O1 | 34.0 (2) |
C1—C2—C3—C4 | 0.2 (3) | C3—C4—C6—O1 | −141.03 (17) |
C2—C3—C4—C5 | −1.0 (3) | C5—C4—C6—C4i | −146.0 (2) |
C2—C3—C4—C6 | 174.0 (2) | C3—C4—C6—C4i | 38.97 (17) |
C3—C4—C5—N1 | 1.2 (3) | C4—C5—N1—C1 | −0.6 (4) |
C6—C4—C5—N1 | −174.1 (2) | C2—C1—N1—C5 | −0.2 (4) |
Symmetry code: (i) −x+1, −y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H7···O2 | 0.86 | 2.22 | 2.907 (3) | 136 |
N1ii—H7ii···O4 | 0.86 | 2.34 | 2.967 (2) | 130 |
Symmetry code: (ii) x+1/2, −y+1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C11H10N2O2+·2ClO4− |
Mr | 385.11 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 296 |
a, b, c (Å) | 8.5315 (3), 15.1772 (6), 5.6107 (2) |
V (Å3) | 726.50 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.50 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.835, 0.905 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6343, 1285, 1235 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.073, 1.10 |
No. of reflections | 1285 |
No. of parameters | 111 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.21 |
Absolute structure | Flack (1983), 503 Friedel pairs |
Absolute structure parameter | 0.10 (10) |
Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H7···O2 | 0.86 | 2.22 | 2.907 (3) | 136.3 |
N1i—H7i···O4 | 0.86 | 2.34 | 2.967 (2) | 129.8 |
Symmetry code: (i) x+1/2, −y+1/2, −z+2. |
Acknowledgements
We thank the State Key Laboratory of Structural Chemistry of China (Reference No. 20110001) and the Beijing Natural Science Foundation (grant No. 2022011) for financial support.
References
Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, X.-D. & Mak, T. C. W. (2005). J. Mol. Struct.. 743, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Chen, X.-D., Wan, C.-Q., Sung, H. H.-Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518–6528. Web of Science CSD CrossRef PubMed CAS Google Scholar
Crook, K. E. & McElvain, S. M. (1930). J. Am. Chem. Soc.. 52, 4006–4011. CrossRef CAS Google Scholar
Favaro, G., Romani, A. & Poggi, G. (1990). Z. Phys. Chem. 168, 55–63. CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Di-3-pyridyl ketone is an extraordinary ligand within the family of basic building blocks for construction of metal-organic complexes with intriguing architectures (Chen & Mak, 2005; Chen et al., 2009). However, the crystal structure of salts with the dipyridyl ketone dication is rarely reported until now. Several related literatures discussed the relationship between the acid-base properties of the dipyridyl ketone isomers and the positions of the nitrogen atoms on the rings, which were investigated by spectrophotometric measurements (Crook & McElvain, 1930; Favaro et al., 1990). In the present context, we report the structure of diprotonated di-3-pyridyl ketone perchlorate salt (Fig. 1). The two pyridyl rings exhibit a dihedral angle of 67.07 (7)°. The crystal structure is stabilized by N—H···(perchlorate) hydrogen bonds forming sheets in the ab plane.