organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro-2-methyl­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 May 2012; accepted 18 May 2012; online 23 May 2012)

In the title compound, C11H12ClNO3, the dihedral angle between the benzene ring and the amide group is 44.9 (2)°. In the crystal, mol­ecules form inversion dimers via pairs of O—H⋯O hydrogen bonds. These dimers are further linked into sheets parallel to (013) via N—H⋯O hydrogen bonds.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711-720.]); Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o835.]), of N-chloro­aryl­amides, see: Gowda & Rao (1989[Gowda, B. T. & Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303-3310.]); Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]) and N-bromo­aryl­sulfonamides, see: Gowda & Mahadevappa (1983[Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359-362.]), Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClNO3

  • Mr = 241.67

  • Triclinic, [P \overline 1]

  • a = 4.7672 (9) Å

  • b = 6.297 (1) Å

  • c = 19.135 (3) Å

  • α = 87.24 (1)°

  • β = 83.95 (1)°

  • γ = 88.28 (2)°

  • V = 570.37 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.881, Tmax = 0.994

  • 3270 measured reflections

  • 2072 independent reflections

  • 1578 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.127

  • S = 1.20

  • 2072 reflections

  • 152 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.83 (2) 1.84 (2) 2.666 (3) 176 (5)
N1—H1N⋯O1ii 0.83 (2) 2.10 (2) 2.905 (3) 163 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Chaithanya et al., 2012); N-chloroarylsulfonamides (Gowda & Rao, 1989; Jyothi & Gowda, 2004) and N-bromoaryl- sulfonamides (Gowda & Mahadevappa, 1983; Usha & Gowda, 2006), in the present work, the crystal structure of N-(3-Chloro-2-methylphenyl)succinamic acid has been determined (Fig. 1). The conformation of the N—H bond in the amide segment is syn to the ortho–methyl and meta–Cl in the benzene ring, in contrast to the anti conformation observed between the N—H bond and the meta–Cl in N-(3-chloro-4-methylphenyl)- succinamic acid (I) (Chaithanya et al., 2012).

Further, the conformations of the amide oxygen and the carboxyl oxygen of the acid segments are anti to each other and both are anti to the H atoms on the adjacent –CH2 groups.

The CO and O—H bonds of the acid groups are in syn position to each other, similar to that observed in (I).

The dihedral angle between the phenyl ring and the amide group is 44.9 (2)°, compared to the values of 40.6 (2)° and 44.9 (3)° in the two independent molecules of (I).

In the crystal, the molecules form centrosymmetric dimers via O-H···O hydrogen bonds. These dimers are further linked into sheets parallel to (0 1 3) via intermolecular N–H···O hydrogen bonds. (Table 1, Fig.2).

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000); Chaithanya et al. (2012), of N-chloroarylamides, see: Gowda & Rao (1989); Jyothi & Gowda (2004) and N-bromoarylsulfonamides, see: Gowda & Mahadevappa (1983), Usha & Gowda (2006).

Experimental top

The solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of 3-chloro-2-methylaniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3-chloro-2-methyl-aniline. The resultant (the title compound) was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectrum.

Plate like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

All H atoms were located in a difference map. The coordinates of the H atoms bonded to N and O were refined with distance restraints of N—H = 0.86 (2) Å and O—H = 0.82 (2) Å, respectively. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å.

The isotropic displacement parameters of all H atoms were set at 1.2 Ueq(C, N, O) or 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3-Chloro-2-methylphenyl)succinamic acid top
Crystal data top
C11H12ClNO3Z = 2
Mr = 241.67F(000) = 252
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7672 (9) ÅCell parameters from 1394 reflections
b = 6.297 (1) Åθ = 3.2–27.9°
c = 19.135 (3) ŵ = 0.33 mm1
α = 87.24 (1)°T = 293 K
β = 83.95 (1)°Plate, colourless
γ = 88.28 (2)°0.40 × 0.20 × 0.02 mm
V = 570.37 (17) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2072 independent reflections
Radiation source: fine-focus sealed tube1578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω and phi scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 55
Tmin = 0.881, Tmax = 0.994k = 77
3270 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0209P)2 + 0.6764P]
where P = (Fo2 + 2Fc2)/3
2072 reflections(Δ/σ)max = 0.004
152 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C11H12ClNO3γ = 88.28 (2)°
Mr = 241.67V = 570.37 (17) Å3
Triclinic, P1Z = 2
a = 4.7672 (9) ÅMo Kα radiation
b = 6.297 (1) ŵ = 0.33 mm1
c = 19.135 (3) ÅT = 293 K
α = 87.24 (1)°0.40 × 0.20 × 0.02 mm
β = 83.95 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2072 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1578 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.994Rint = 0.013
3270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0642 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.29 e Å3
2072 reflectionsΔρmin = 0.24 e Å3
152 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.7008 (3)1.2310 (2)0.02839 (6)0.0864 (4)
O10.0716 (4)0.7206 (4)0.30679 (13)0.0603 (7)
O20.5808 (6)0.1513 (5)0.42666 (16)0.0873 (11)
O30.2228 (7)0.1937 (5)0.50625 (15)0.0877 (11)
H3O0.286 (10)0.084 (5)0.525 (2)0.105*
N10.5099 (5)0.8278 (4)0.26805 (14)0.0415 (7)
H1N0.682 (4)0.810 (5)0.2711 (17)0.050*
C10.4362 (6)0.9970 (5)0.22052 (16)0.0393 (7)
C20.5859 (6)1.0149 (5)0.15377 (16)0.0406 (8)
C30.5154 (7)1.1899 (6)0.11106 (18)0.0514 (9)
C40.3030 (8)1.3342 (6)0.1311 (2)0.0613 (10)
H40.26071.44790.10090.074*
C50.1540 (8)1.3084 (6)0.1963 (2)0.0607 (10)
H50.00811.40370.21010.073*
C60.2212 (7)1.1408 (5)0.24147 (18)0.0492 (9)
H60.12221.12450.28590.059*
C70.3272 (6)0.7039 (5)0.30781 (16)0.0396 (7)
C80.4613 (6)0.5332 (5)0.35262 (17)0.0442 (8)
H8A0.54070.42150.32280.053*
H8B0.61470.59380.37390.053*
C90.2546 (7)0.4374 (5)0.40990 (17)0.0468 (8)
H9A0.19560.54530.44330.056*
H9B0.08860.39600.38910.056*
C100.3694 (6)0.2483 (5)0.44866 (17)0.0437 (8)
C110.8049 (7)0.8513 (6)0.12881 (19)0.0561 (10)
H11A0.98930.90160.13410.067*
H11B0.79110.82710.08010.067*
H11C0.77430.72080.15620.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0936 (8)0.0975 (9)0.0604 (6)0.0060 (7)0.0040 (6)0.0424 (6)
O10.0262 (11)0.0745 (17)0.0765 (17)0.0014 (11)0.0078 (11)0.0376 (14)
O20.0694 (18)0.087 (2)0.090 (2)0.0396 (16)0.0279 (16)0.0509 (17)
O30.095 (2)0.081 (2)0.0711 (19)0.0421 (17)0.0320 (16)0.0445 (16)
N10.0246 (12)0.0503 (16)0.0477 (15)0.0015 (12)0.0063 (12)0.0195 (13)
C10.0326 (16)0.0368 (17)0.0493 (19)0.0006 (13)0.0128 (14)0.0105 (14)
C20.0360 (16)0.0434 (18)0.0427 (18)0.0029 (14)0.0102 (14)0.0102 (14)
C30.051 (2)0.052 (2)0.050 (2)0.0023 (17)0.0102 (16)0.0185 (17)
C40.066 (2)0.048 (2)0.069 (3)0.0076 (19)0.019 (2)0.0244 (19)
C50.065 (2)0.042 (2)0.075 (3)0.0200 (18)0.014 (2)0.0042 (19)
C60.0474 (19)0.0468 (19)0.052 (2)0.0069 (16)0.0061 (16)0.0051 (16)
C70.0284 (16)0.0479 (19)0.0415 (17)0.0030 (13)0.0059 (13)0.0110 (14)
C80.0305 (16)0.0520 (19)0.0481 (19)0.0028 (14)0.0067 (14)0.0200 (16)
C90.0398 (17)0.050 (2)0.0474 (19)0.0075 (15)0.0019 (15)0.0169 (16)
C100.0350 (17)0.0481 (19)0.0450 (18)0.0026 (14)0.0019 (14)0.0148 (15)
C110.050 (2)0.063 (2)0.052 (2)0.0112 (18)0.0030 (17)0.0125 (18)
Geometric parameters (Å, º) top
Cl1—C31.741 (4)C4—H40.9300
O1—C71.222 (3)C5—C61.383 (5)
O2—C101.210 (4)C5—H50.9300
O3—C101.279 (4)C6—H60.9300
O3—H3O0.831 (19)C7—C81.512 (4)
N1—C71.338 (4)C8—C91.510 (4)
N1—C11.427 (4)C8—H8A0.9700
N1—H1N0.834 (18)C8—H8B0.9700
C1—C61.387 (4)C9—C101.493 (4)
C1—C21.397 (4)C9—H9A0.9700
C2—C31.394 (4)C9—H9B0.9700
C2—C111.503 (4)C11—H11A0.9600
C3—C41.376 (5)C11—H11B0.9600
C4—C51.374 (5)C11—H11C0.9600
C10—O3—H3O112 (3)O1—C7—C8121.8 (3)
C7—N1—C1125.5 (2)N1—C7—C8114.8 (2)
C7—N1—H1N119 (2)C9—C8—C7112.7 (2)
C1—N1—H1N115 (2)C9—C8—H8A109.0
C6—C1—C2121.4 (3)C7—C8—H8A109.0
C6—C1—N1119.7 (3)C9—C8—H8B109.0
C2—C1—N1118.8 (3)C7—C8—H8B109.0
C3—C2—C1116.3 (3)H8A—C8—H8B107.8
C3—C2—C11121.9 (3)C10—C9—C8114.1 (3)
C1—C2—C11121.7 (3)C10—C9—H9A108.7
C4—C3—C2122.9 (3)C8—C9—H9A108.7
C4—C3—Cl1117.6 (3)C10—C9—H9B108.7
C2—C3—Cl1119.5 (3)C8—C9—H9B108.7
C5—C4—C3119.3 (3)H9A—C9—H9B107.6
C5—C4—H4120.3O2—C10—O3122.5 (3)
C3—C4—H4120.3O2—C10—C9122.8 (3)
C4—C5—C6120.0 (3)O3—C10—C9114.7 (3)
C4—C5—H5120.0C2—C11—H11A109.5
C6—C5—H5120.0C2—C11—H11B109.5
C5—C6—C1120.0 (3)H11A—C11—H11B109.5
C5—C6—H6120.0C2—C11—H11C109.5
C1—C6—H6120.0H11A—C11—H11C109.5
O1—C7—N1123.3 (3)H11B—C11—H11C109.5
C7—N1—C1—C645.2 (5)C3—C4—C5—C61.0 (6)
C7—N1—C1—C2135.5 (3)C4—C5—C6—C10.9 (6)
C6—C1—C2—C32.8 (5)C2—C1—C6—C51.1 (5)
N1—C1—C2—C3176.5 (3)N1—C1—C6—C5178.2 (3)
C6—C1—C2—C11175.6 (3)C1—N1—C7—O11.3 (6)
N1—C1—C2—C115.1 (5)C1—N1—C7—C8178.8 (3)
C1—C2—C3—C42.7 (5)O1—C7—C8—C917.7 (5)
C11—C2—C3—C4175.7 (4)N1—C7—C8—C9164.6 (3)
C1—C2—C3—Cl1177.4 (2)C7—C8—C9—C10171.9 (3)
C11—C2—C3—Cl14.2 (5)C8—C9—C10—O216.0 (5)
C2—C3—C4—C50.8 (6)C8—C9—C10—O3165.6 (3)
Cl1—C3—C4—C5179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.83 (2)1.84 (2)2.666 (3)176 (5)
N1—H1N···O1ii0.83 (2)2.10 (2)2.905 (3)163 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H12ClNO3
Mr241.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.7672 (9), 6.297 (1), 19.135 (3)
α, β, γ (°)87.24 (1), 83.95 (1), 88.28 (2)
V3)570.37 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.40 × 0.20 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.881, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
3270, 2072, 1578
Rint0.013
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.127, 1.20
No. of reflections2072
No. of parameters152
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.831 (19)1.84 (2)2.666 (3)176 (5)
N1—H1N···O1ii0.834 (18)2.10 (2)2.905 (3)163 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under theUGC–BSR one-time grant to faculty.

References

First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o835.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720.  CAS Google Scholar
First citationGowda, B. T. & Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303–3310.  CrossRef CAS Web of Science Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds