metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(pyridazine-κN)bis­­(thio­cyanato-κN)nickel(II) pyridazine disolvate

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, and bDepartement of Chemistry, Texas A&M University, College Station, Texas 77843, USA
*Correspondence e-mail: swoehlert@ac.uni-kiel.de

(Received 21 May 2012; accepted 21 May 2012; online 26 May 2012)

The reaction of nickel(II) thio­cyanate with an excess of pyridazine leads to single crystals of the title compound, [Ni(NCS)2(C4H4N2)4]·2C4H4N2. The NiII cations are coordinated by two terminal N-bonded thio­cyanate anions (trans) and four pyridazine ligands in a slightly distorted octa­hedral geometry. The discrete complexes are arranged into layers parallel to the ab plane which are separated by additional non-coordinated pyridazine ligands.

Related literature

For related pyridazine coordination compounds, see: Boeckmann et al. (2011[Boeckmann, J., Jess, I., Reinert, T. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 5502-5511.]); Lloret et al. (1998[Lloret, F., Munno, G., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. 37, 135-138.]); Yi et al. (2006[Yi, T., Ho-Chol, C., Gao, S. & Kitagawa, S. (2006). Eur. J. Inorg. Chem. pp. 1381-1387.]); Wriedt & Näther (2009[Wriedt, M. & Näther, C. (2009). Z. Anorg. Allg. Chem. 635, 2459-2464.], 2011[Wriedt, M. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 228-234.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C4H4N2)4]·2C4H4N2

  • Mr = 655.42

  • Triclinic, [P \overline 1]

  • a = 11.2111 (9) Å

  • b = 12.033 (1) Å

  • c = 12.5409 (10) Å

  • α = 62.287 (9)°

  • β = 88.983 (10)°

  • γ = 88.949 (10)°

  • V = 1497.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 200 K

  • 0.06 × 0.04 × 0.03 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.916, Tmax = 0.973

  • 11937 measured reflections

  • 6400 independent reflections

  • 4719 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 0.97

  • 6400 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: XCIF in SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Currently, we are interested in the synthesis and characterization of coordination polymers based on Mn(II), Fe(II), Co(II), Ni(II) and Cd(II) thiocyanates and pyridazine as co-ligand. Only a few compounds based on Cobalt, Nickel and Cadmium are structurally characterized (Boeckmann et al., 2011; Lloret et al., 1998; Yi et al., 2006; Wriedt & Näther, 2011; Wriedt & Näther, 2009). In this context we have reported on two different modifications of a trinuclear nickel(II) complex of composition [Ni3(NCS)6(pyridazine)6] (Wriedt & Näther, 2009). In our ongoing investigation in this field we have isolated light-green single-crystals of a further compound by the reaction of nickel(II) thiocyanate with an excess of pyridazine, that were characterized by single-crystal X-ray diffraction. In the crystal structure of the title compound each nickel(II) cation is coordinated by two terminal N-bonded thiocyanato anions and four pyridazine ligands in a slightly distorted octahedral geometry (Fig. 1). The NiN6 distances are ranges from 2.0494 (15) to 2.1530 (15) Å and the angles are between 87.33 (5) ° and 179.71 (7) °. Because of sterical reasons only one of the two pyridazine nitrogen atoms is involved in metal coordination. In the crystal structure the discrete complexes are arranged in layers that are parallel to the ab plane. These layers are separated by additional pyridazine ligands that are not coordinated to the metal centers (Fig. 2). The shortest intermolecular Ni···Ni distances amounts to 8.0823 (9) Å.

Related literature top

For related pyridazine coordination compounds, see: Boeckmann et al. (2011); Lloret et al. (1998); Yi et al. (2006); Wriedt & Näther (2009, 2011). For the PLATON program, see: Spek (2009)

Experimental top

Nickel(II) thiocyanate (Ni(NCS)2) and pyridazine were obtained from Alfa Aesar. All chemicals were used without further purification. 0.125 mmol (21.7 mg) Ni(NCS)2 and 2.76 mmol (200 µL) pyridazine were reacted in a closed snap-vial without stirring. Light-green single crystals of the title compounds were obtained after two weeks.

Refinement top

All H atoms were located in a difference map but were positioned with idealized geometry and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) and C—H = 0.95 Å. PLATON (Spek, 2009) detected a pseudo-C centring in the structure. Nevertheless, the structure is just triclinic primitive.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with atom labels and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Crystal structure of the title compound with view along the crystallographic b-axis.
Tetrakis(pyridazine-κN)bis(thiocyanato-κN)nickel(II) pyridazine disolvate top
Crystal data top
[Ni(NCS)2(C4H4N2)4]·2C4H4N2Z = 2
Mr = 655.42F(000) = 676
Triclinic, P1Dx = 1.454 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2111 (9) ÅCell parameters from 11937 reflections
b = 12.033 (1) Åθ = 2.6–27.0°
c = 12.5409 (10) ŵ = 0.83 mm1
α = 62.287 (9)°T = 200 K
β = 88.983 (10)°Block, light-green
γ = 88.949 (10)°0.06 × 0.04 × 0.03 mm
V = 1497.4 (2) Å3
Data collection top
Stoe IPDS-1
diffractometer
6400 independent reflections
Radiation source: fine-focus sealed tube4719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi scanθmax = 27.0°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1414
Tmin = 0.916, Tmax = 0.973k = 1515
11937 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
6400 reflectionsΔρmax = 0.39 e Å3
389 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0149 (15)
Crystal data top
[Ni(NCS)2(C4H4N2)4]·2C4H4N2γ = 88.949 (10)°
Mr = 655.42V = 1497.4 (2) Å3
Triclinic, P1Z = 2
a = 11.2111 (9) ÅMo Kα radiation
b = 12.033 (1) ŵ = 0.83 mm1
c = 12.5409 (10) ÅT = 200 K
α = 62.287 (9)°0.06 × 0.04 × 0.03 mm
β = 88.983 (10)°
Data collection top
Stoe IPDS-1
diffractometer
6400 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
4719 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.973Rint = 0.029
11937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 0.97Δρmax = 0.39 e Å3
6400 reflectionsΔρmin = 0.40 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.752765 (19)0.75179 (2)0.993234 (18)0.01640 (8)
N20.85894 (13)0.65700 (14)1.14111 (13)0.0237 (3)
C20.93634 (15)0.60587 (16)1.20694 (14)0.0195 (3)
S21.04648 (4)0.53396 (5)1.29882 (4)0.03462 (13)
N10.64734 (13)0.84717 (14)0.84542 (13)0.0241 (3)
C10.56476 (16)0.89404 (16)0.78585 (14)0.0204 (4)
S10.44826 (5)0.95934 (5)0.70169 (5)0.03734 (14)
N100.69744 (12)0.57958 (14)0.99727 (12)0.0212 (3)
N110.65668 (14)0.48848 (14)1.10237 (14)0.0281 (3)
C110.62296 (18)0.38099 (18)1.10720 (19)0.0332 (4)
H110.59230.31801.18150.040*
C120.62968 (18)0.3551 (2)1.0107 (2)0.0365 (5)
H120.60560.27651.01800.044*
C130.67269 (19)0.4479 (2)0.9041 (2)0.0398 (5)
H130.68060.43590.83460.048*
C140.70445 (17)0.5607 (2)0.90134 (17)0.0301 (4)
H140.73230.62690.82750.036*
N200.61071 (12)0.74611 (13)1.11065 (12)0.0185 (3)
N210.54160 (13)0.85064 (14)1.06923 (12)0.0221 (3)
C210.45590 (16)0.85656 (18)1.14045 (16)0.0267 (4)
H210.40840.93091.11150.032*
C220.43142 (18)0.7605 (2)1.25495 (17)0.0329 (5)
H220.36820.76801.30270.039*
C230.50158 (17)0.65455 (18)1.29662 (16)0.0287 (4)
H230.48870.58551.37400.034*
C240.59298 (16)0.65231 (16)1.22036 (14)0.0223 (4)
H240.64440.58091.24810.027*
N300.80605 (12)0.92471 (14)0.98921 (13)0.0210 (3)
N310.83861 (14)1.02153 (14)0.88415 (14)0.0278 (3)
C310.86974 (18)1.12832 (19)0.88297 (19)0.0336 (4)
H310.89401.19600.80840.040*
C320.86879 (19)1.1465 (2)0.9847 (2)0.0382 (5)
H320.89151.22420.98040.046*
C330.83376 (19)1.0480 (2)1.0911 (2)0.0387 (5)
H330.82981.05491.16350.046*
C340.80415 (17)0.93705 (19)1.08911 (17)0.0290 (4)
H340.78150.86691.16270.035*
N400.89770 (12)0.75517 (13)0.87968 (12)0.0192 (3)
N410.96253 (13)0.64770 (14)0.92420 (12)0.0228 (3)
C411.05424 (16)0.64035 (18)0.85962 (16)0.0266 (4)
H411.09870.56400.89020.032*
C421.08890 (17)0.7384 (2)0.74940 (17)0.0316 (4)
H421.15670.73030.70690.038*
C431.02254 (18)0.84661 (19)0.70416 (16)0.0298 (4)
H431.04200.91630.62910.036*
C440.92462 (16)0.85029 (17)0.77327 (15)0.0236 (4)
H440.87560.92360.74290.028*
N500.70575 (16)1.39686 (16)0.45667 (15)0.0364 (4)
N510.61715 (16)1.33478 (17)0.43752 (15)0.0374 (4)
C510.6319 (2)1.2132 (2)0.47219 (19)0.0387 (5)
H510.56861.17010.45870.046*
C520.7336 (2)1.1454 (2)0.5268 (2)0.0403 (5)
H520.74031.05830.55010.048*
C530.82377 (19)1.2079 (2)0.54582 (19)0.0371 (5)
H530.89591.16660.58310.044*
C540.80526 (19)1.3355 (2)0.50801 (18)0.0339 (5)
H540.86751.38120.51970.041*
N601.18977 (17)1.12073 (18)0.50816 (18)0.0425 (4)
N611.12255 (18)1.1575 (2)0.57472 (19)0.0497 (5)
C611.1514 (3)1.2601 (3)0.5806 (2)0.0525 (7)
H611.10191.28540.62790.063*
C621.2485 (3)1.3331 (2)0.5228 (3)0.0559 (7)
H621.26651.40610.53010.067*
C631.3172 (2)1.2955 (2)0.4547 (3)0.0535 (7)
H631.38551.34110.41200.064*
C641.2832 (2)1.1884 (2)0.4506 (2)0.0444 (6)
H641.33011.16130.40300.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01669 (12)0.01298 (12)0.01687 (12)0.00196 (7)0.00033 (7)0.00480 (8)
N20.0236 (7)0.0211 (8)0.0227 (7)0.0033 (6)0.0016 (6)0.0072 (6)
C20.0225 (8)0.0150 (8)0.0199 (7)0.0005 (7)0.0014 (7)0.0073 (7)
S20.0301 (3)0.0309 (3)0.0348 (3)0.0052 (2)0.0147 (2)0.0082 (2)
N10.0249 (8)0.0231 (8)0.0215 (7)0.0036 (6)0.0018 (6)0.0081 (6)
C10.0262 (9)0.0146 (8)0.0191 (7)0.0016 (7)0.0019 (7)0.0068 (7)
S10.0335 (3)0.0295 (3)0.0393 (3)0.0034 (2)0.0174 (2)0.0074 (2)
N100.0193 (7)0.0183 (8)0.0248 (7)0.0001 (6)0.0008 (6)0.0090 (6)
N110.0330 (8)0.0186 (8)0.0301 (8)0.0047 (7)0.0069 (7)0.0091 (7)
C110.0324 (10)0.0206 (10)0.0431 (11)0.0054 (8)0.0038 (9)0.0118 (9)
C120.0315 (10)0.0283 (11)0.0568 (13)0.0053 (8)0.0018 (9)0.0256 (10)
C130.0416 (12)0.0464 (14)0.0484 (12)0.0086 (10)0.0005 (10)0.0361 (11)
C140.0308 (10)0.0336 (11)0.0295 (9)0.0064 (8)0.0011 (8)0.0175 (8)
N200.0192 (7)0.0154 (7)0.0195 (6)0.0027 (6)0.0004 (5)0.0070 (6)
N210.0226 (7)0.0183 (8)0.0222 (7)0.0053 (6)0.0007 (6)0.0070 (6)
C210.0270 (9)0.0252 (10)0.0286 (9)0.0076 (8)0.0008 (7)0.0136 (8)
C220.0325 (10)0.0377 (12)0.0293 (9)0.0027 (9)0.0093 (8)0.0168 (9)
C230.0337 (10)0.0272 (10)0.0204 (8)0.0000 (8)0.0055 (7)0.0071 (8)
C240.0260 (9)0.0181 (9)0.0203 (8)0.0013 (7)0.0006 (7)0.0068 (7)
N300.0185 (7)0.0172 (7)0.0260 (7)0.0019 (6)0.0016 (6)0.0089 (6)
N310.0319 (8)0.0174 (8)0.0314 (8)0.0033 (6)0.0060 (7)0.0093 (7)
C310.0341 (10)0.0224 (10)0.0412 (11)0.0069 (8)0.0062 (9)0.0123 (9)
C320.0348 (11)0.0295 (11)0.0588 (13)0.0059 (9)0.0007 (10)0.0275 (11)
C330.0408 (12)0.0428 (13)0.0445 (11)0.0090 (10)0.0011 (9)0.0302 (11)
C340.0325 (10)0.0276 (10)0.0281 (9)0.0054 (8)0.0010 (8)0.0138 (8)
N400.0194 (7)0.0157 (7)0.0205 (6)0.0001 (6)0.0011 (5)0.0068 (6)
N410.0234 (7)0.0181 (8)0.0240 (7)0.0045 (6)0.0023 (6)0.0075 (6)
C410.0260 (9)0.0260 (10)0.0278 (9)0.0054 (8)0.0025 (7)0.0127 (8)
C420.0292 (10)0.0374 (12)0.0289 (9)0.0002 (8)0.0104 (8)0.0164 (9)
C430.0363 (10)0.0280 (10)0.0205 (8)0.0062 (8)0.0080 (7)0.0076 (8)
C440.0311 (9)0.0159 (9)0.0200 (8)0.0015 (7)0.0013 (7)0.0053 (7)
N500.0455 (10)0.0223 (9)0.0359 (9)0.0048 (8)0.0030 (8)0.0086 (7)
N510.0394 (10)0.0320 (10)0.0333 (9)0.0052 (8)0.0048 (7)0.0086 (8)
C510.0455 (13)0.0367 (12)0.0370 (10)0.0160 (10)0.0042 (9)0.0192 (10)
C520.0516 (14)0.0242 (11)0.0462 (12)0.0015 (10)0.0107 (10)0.0176 (10)
C530.0339 (11)0.0377 (12)0.0352 (10)0.0051 (9)0.0074 (8)0.0137 (9)
C540.0351 (11)0.0321 (11)0.0322 (10)0.0095 (9)0.0004 (8)0.0127 (9)
N600.0403 (10)0.0337 (10)0.0583 (12)0.0004 (8)0.0048 (9)0.0254 (9)
N610.0437 (11)0.0400 (12)0.0573 (12)0.0049 (9)0.0056 (9)0.0163 (10)
C610.0640 (17)0.0532 (16)0.0474 (13)0.0264 (14)0.0112 (12)0.0299 (13)
C620.0652 (17)0.0297 (13)0.0843 (19)0.0167 (12)0.0445 (15)0.0353 (14)
C630.0351 (12)0.0342 (13)0.0771 (18)0.0056 (10)0.0074 (12)0.0136 (13)
C640.0445 (13)0.0424 (14)0.0494 (13)0.0022 (11)0.0042 (10)0.0242 (11)
Geometric parameters (Å, º) top
Ni1—N12.0494 (15)C32—C331.366 (3)
Ni1—N22.0538 (15)C32—H320.9500
Ni1—N402.1298 (13)C33—C341.393 (3)
Ni1—N202.1299 (13)C33—H330.9500
Ni1—N102.1516 (15)C34—H340.9500
Ni1—N302.1530 (15)N40—C441.327 (2)
N2—C21.160 (2)N40—N411.3494 (19)
C2—S21.6387 (18)N41—C411.325 (2)
N1—C11.161 (2)C41—C421.391 (3)
C1—S11.6362 (18)C41—H410.9500
N10—C141.325 (2)C42—C431.365 (3)
N10—N111.342 (2)C42—H420.9500
N11—C111.328 (3)C43—C441.399 (2)
C11—C121.384 (3)C43—H430.9500
C11—H110.9500C44—H440.9500
C12—C131.369 (3)N50—C541.326 (3)
C12—H120.9500N50—N511.343 (3)
C13—C141.394 (3)N51—C511.326 (3)
C13—H130.9500C51—C521.382 (3)
C14—H140.9500C51—H510.9500
N20—C241.327 (2)C52—C531.360 (3)
N20—N211.3502 (19)C52—H520.9500
N21—C211.324 (2)C53—C541.393 (3)
C21—C221.388 (3)C53—H530.9500
C21—H210.9500C54—H540.9500
C22—C231.370 (3)N60—C641.318 (3)
C22—H220.9500N60—N611.331 (3)
C23—C241.398 (2)N61—C611.316 (3)
C23—H230.9500C61—C621.378 (4)
C24—H240.9500C61—H610.9500
N30—C341.328 (2)C62—C631.360 (4)
N30—N311.341 (2)C62—H620.9500
N31—C311.331 (3)C63—C641.375 (4)
C31—C321.391 (3)C63—H630.9500
C31—H310.9500C64—H640.9500
N1—Ni1—N2179.71 (7)N31—C31—H31118.1
N1—Ni1—N4090.25 (6)C32—C31—H31118.1
N2—Ni1—N4089.64 (6)C33—C32—C31117.2 (2)
N1—Ni1—N2091.20 (6)C33—C32—H32121.4
N2—Ni1—N2088.90 (6)C31—C32—H32121.4
N40—Ni1—N20178.54 (6)C32—C33—C34117.37 (19)
N1—Ni1—N1088.37 (6)C32—C33—H33121.3
N2—Ni1—N1091.90 (6)C34—C33—H33121.3
N40—Ni1—N1087.95 (5)N30—C34—C33123.06 (18)
N20—Ni1—N1092.16 (5)N30—C34—H34118.5
N1—Ni1—N3091.25 (6)C33—C34—H34118.5
N2—Ni1—N3088.48 (6)C44—N40—N41120.64 (14)
N40—Ni1—N3092.57 (5)C44—N40—Ni1125.54 (12)
N20—Ni1—N3087.33 (5)N41—N40—Ni1113.81 (10)
N10—Ni1—N30179.36 (5)C41—N41—N40118.32 (14)
C2—N2—Ni1165.91 (13)N41—C41—C42123.54 (17)
N2—C2—S2179.46 (15)N41—C41—H41118.2
C1—N1—Ni1161.54 (13)C42—C41—H41118.2
N1—C1—S1179.63 (17)C43—C42—C41117.98 (16)
C14—N10—N11119.91 (16)C43—C42—H42121.0
C14—N10—Ni1122.41 (13)C41—C42—H42121.0
N11—N10—Ni1117.67 (11)C42—C43—C44117.04 (16)
C11—N11—N10118.70 (15)C42—C43—H43121.5
N11—C11—C12124.07 (19)C44—C43—H43121.5
N11—C11—H11118.0N40—C44—C43122.43 (16)
C12—C11—H11118.0N40—C44—H44118.8
C13—C12—C11116.88 (19)C43—C44—H44118.8
C13—C12—H12121.6C54—N50—N51119.27 (18)
C11—C12—H12121.6C51—N51—N50118.58 (19)
C12—C13—C14117.59 (18)N51—C51—C52124.1 (2)
C12—C13—H13121.2N51—C51—H51117.9
C14—C13—H13121.2C52—C51—H51117.9
N10—C14—C13122.82 (18)C53—C52—C51117.5 (2)
N10—C14—H14118.6C53—C52—H52121.2
C13—C14—H14118.6C51—C52—H52121.2
C24—N20—N21120.47 (13)C52—C53—C54116.8 (2)
C24—N20—Ni1124.29 (11)C52—C53—H53121.6
N21—N20—Ni1115.09 (10)C54—C53—H53121.6
C21—N21—N20118.35 (14)N50—C54—C53123.7 (2)
N21—C21—C22123.81 (17)N50—C54—H54118.1
N21—C21—H21118.1C53—C54—H54118.1
C22—C21—H21118.1C64—N60—N61118.7 (2)
C23—C22—C21117.67 (16)C61—N61—N60119.0 (2)
C23—C22—H22121.2N61—C61—C62124.4 (2)
C21—C22—H22121.2N61—C61—H61117.8
C22—C23—C24117.13 (17)C62—C61—H61117.8
C22—C23—H23121.4C63—C62—C61116.7 (2)
C24—C23—H23121.4C63—C62—H62121.7
N20—C24—C23122.52 (16)C61—C62—H62121.7
N20—C24—H24118.7C62—C63—C64116.9 (2)
C23—C24—H24118.7C62—C63—H63121.6
C34—N30—N31119.93 (16)C64—C63—H63121.6
C34—N30—Ni1120.60 (12)N60—C64—C63124.4 (2)
N31—N30—Ni1119.45 (11)N60—C64—H64117.8
C31—N31—N30118.68 (16)C63—C64—H64117.8
N31—C31—C32123.75 (19)

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C4H4N2)4]·2C4H4N2
Mr655.42
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)11.2111 (9), 12.033 (1), 12.5409 (10)
α, β, γ (°)62.287 (9), 88.983 (10), 88.949 (10)
V3)1497.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.06 × 0.04 × 0.03
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.916, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
11937, 6400, 4719
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 0.97
No. of reflections6400
No. of parameters389
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.40

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011), XCIF in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig–Holstein. We also thank Professor Dr Wolfgang Bensch for access to his experimental facility.

References

First citationBoeckmann, J., Jess, I., Reinert, T. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 5502–5511.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLloret, F., Munno, G., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. 37, 135–138.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M. & Näther, C. (2009). Z. Anorg. Allg. Chem. 635, 2459–2464.  Web of Science CSD CrossRef CAS Google Scholar
First citationWriedt, M. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 228–234.  Web of Science CSD CrossRef Google Scholar
First citationYi, T., Ho-Chol, C., Gao, S. & Kitagawa, S. (2006). Eur. J. Inorg. Chem. pp. 1381–1387.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds