organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(2-methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, bInstitute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of Technology, Námestie slobody 17, SK-812 37 Bratislava, Slovak Republic, cInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava, Slovak Republic, and dInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 24 May 2012; accepted 25 May 2012; online 31 May 2012)

In the title compound, C14H12ClNO, the two aromatic rings are almost coplanar, making a dihedral angle of 4.08 (18)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into infinite chains running along the a axis.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2000[Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721-728.]); Rodrigues et al. (2012[Rodrigues, V. Z., Gowda, B. T., Vrábel, V. & Kožíšek, J. (2012). Acta Cryst. E68, o723.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]) of N-chloro­aryl­amides, see: Gowda & Rao (1989[Gowda, B. T. & Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303-3310.]); Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]) and of N-bromo­aryl­sulfonamides, see: Gowda & Mahadevappa (1983[Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359-362.]); Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Orthorhombic, P n a 21

  • a = 9.746 (3) Å

  • b = 6.077 (3) Å

  • c = 20.797 (7) Å

  • V = 1231.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.55 × 0.40 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.865, Tmax = 0.921

  • 16249 measured reflections

  • 2173 independent reflections

  • 1369 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.147

  • S = 1.10

  • 2173 reflections

  • 158 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1054 Friedel pairs

  • Flack parameter: 0.37 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.00 (1) 2.853 (5) 171 (5)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Rodrigues et al., 2012; Saeed et al., 2010), N-chloroarylsulfonamides(Gowda & Rao, 1989; Jyothi & Gowda, 2004) and N-bromoarylsulfonamides(Gowda & Mahadevappa, 1983; Usha & Gowda, 2006), in the present work, the crystal structure of 2-chloro-N-(2-methylphenyl)benzamide has been determined (Fig.1).

In the title compound, the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond, similar to that observed in 2-chloro-N-(3-methylphenyl)benzamide (I) (Rodrigues et al., 2012). The ortho-methyl group in the anilino ring is also positioned syn to the N—H bond, in contrast to the anti conformation observed between the meta-methyl group and the N—H bond in (I).

The central amide core –NH—C(=O)– group is twisted by 58.77 (27)° and 56.30 (28)° out of the planes of the 2-chlorophenyl and 2-methylphenyl rings, respectively, while the two aromatic rings make only a dihedral angle of 4.08 (18)°, compared to the value of 38.7 (1)° in (I)

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite chains running along the a-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Rodrigues et al. (2012); Saeed et al. (2010); N-chloroarylamides, see: Gowda & Rao (1989), Jyothi & Gowda (2004) and N-bromoarylsulfonamides, see: Gowda & Mahadevappa (1983), Usha & Gowda (2006).

Experimental top

The title compound was prepared by the method similar to the one described by Gowda et al. (2000). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Plate like colorless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

Hydrogen atoms were placed in calculated positions with C–H distances of 0.93 Å (C-aromatic), 0.96 Å (C-methyl) and constrained to ride on their parent atoms. The amide H atom was visible in a difference map and refined with the N—H distance restrained to 0.860 (2) Å. The Uiso(H) values were set at 1.2Ueq (C-aromatic) or 1.5Ueq (C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view of the title compound. Molecular links along a-axis are generated by N–H···O hydrogen bonds which are shown by dashed lines. H atoms have been omitted for clarity.
2-Chloro-N-(2-methylphenyl)benzamide top
Crystal data top
C14H12ClNOF(000) = 512
Mr = 245.70Dx = 1.325 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2182 reflections
a = 9.746 (3) Åθ = 3.5–25.0°
b = 6.077 (3) ŵ = 0.29 mm1
c = 20.797 (7) ÅT = 295 K
V = 1231.8 (8) Å3Plate, colourless
Z = 40.55 × 0.40 × 0.25 mm
Data collection top
Xcalibur, Ruby, Gemini
diffractometer
2173 independent reflections
Radiation source: fine-focus sealed tube1369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 10.434 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scansh = 1111
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 77
Tmin = 0.865, Tmax = 0.921l = 2424
16249 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2173 reflectionsΔρmax = 0.22 e Å3
158 parametersΔρmin = 0.14 e Å3
2 restraintsAbsolute structure: Flack (1983), 1054 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.37 (13)
Crystal data top
C14H12ClNOV = 1231.8 (8) Å3
Mr = 245.70Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.746 (3) ŵ = 0.29 mm1
b = 6.077 (3) ÅT = 295 K
c = 20.797 (7) Å0.55 × 0.40 × 0.25 mm
Data collection top
Xcalibur, Ruby, Gemini
diffractometer
2173 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
1369 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.921Rint = 0.097
16249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147Δρmax = 0.22 e Å3
S = 1.10Δρmin = 0.14 e Å3
2173 reflectionsAbsolute structure: Flack (1983), 1054 Friedel pairs
158 parametersAbsolute structure parameter: 0.37 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5638 (4)0.6837 (8)0.4527 (3)0.0506 (12)
C20.5037 (4)0.5445 (10)0.3997 (2)0.0497 (14)
C30.5364 (4)0.5696 (9)0.3373 (3)0.0596 (15)
C40.4845 (7)0.4319 (12)0.2916 (3)0.0833 (19)
H4A0.50990.44920.24880.100*
C50.3941 (6)0.2667 (12)0.3087 (5)0.0850 (17)
H5A0.35870.17230.27770.102*
C60.3578 (5)0.2439 (10)0.3713 (4)0.0784 (17)
H6A0.29680.13380.38340.094*
C70.4101 (4)0.3811 (10)0.4159 (3)0.0644 (16)
H7A0.38300.36600.45850.077*
C80.5196 (4)0.9375 (9)0.5395 (3)0.0552 (14)
C90.4657 (5)0.9069 (10)0.6004 (3)0.0646 (16)
C100.5118 (6)1.0562 (13)0.6480 (3)0.0815 (18)
H10A0.47561.04700.68930.098*
C110.6062 (7)1.2098 (13)0.6351 (4)0.096 (3)
H11A0.64031.29630.66840.115*
C120.6535 (5)1.2420 (9)0.5735 (4)0.0813 (19)
H12A0.71521.35490.56470.098*
C130.6101 (4)1.1096 (10)0.5260 (3)0.0679 (17)
H13A0.64021.13240.48410.082*
C140.3642 (5)0.7289 (9)0.6169 (3)0.0664 (16)
H14C0.34000.73950.66150.100*
H14B0.40440.58750.60860.100*
H14A0.28330.74610.59100.100*
N10.4759 (4)0.7929 (8)0.4882 (2)0.0611 (12)
H10.3902 (14)0.785 (9)0.479 (3)0.070 (17)*
O10.6897 (3)0.6844 (6)0.46020 (18)0.0739 (11)
Cl10.64973 (16)0.7710 (3)0.31282 (10)0.0971 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.046 (3)0.063 (3)0.001 (2)0.005 (2)0.001 (3)
C20.029 (2)0.071 (4)0.049 (3)0.006 (2)0.002 (2)0.002 (2)
C30.044 (3)0.076 (4)0.059 (4)0.006 (2)0.000 (3)0.003 (3)
C40.088 (4)0.102 (6)0.060 (4)0.024 (4)0.003 (3)0.011 (4)
C50.076 (4)0.082 (4)0.097 (5)0.004 (3)0.012 (4)0.035 (4)
C60.064 (4)0.078 (5)0.093 (5)0.010 (3)0.004 (3)0.020 (4)
C70.042 (3)0.081 (4)0.070 (4)0.004 (2)0.001 (2)0.004 (3)
C80.036 (2)0.063 (4)0.067 (4)0.010 (3)0.011 (3)0.017 (3)
C90.054 (3)0.074 (4)0.066 (4)0.020 (3)0.015 (3)0.011 (4)
C100.065 (3)0.114 (6)0.065 (4)0.020 (4)0.002 (3)0.010 (4)
C110.090 (5)0.104 (6)0.094 (6)0.015 (4)0.028 (4)0.049 (5)
C120.061 (3)0.067 (4)0.116 (6)0.001 (3)0.015 (3)0.023 (4)
C130.046 (3)0.077 (5)0.080 (4)0.002 (3)0.003 (3)0.006 (4)
C140.059 (3)0.069 (4)0.071 (4)0.001 (3)0.006 (2)0.015 (3)
N10.039 (2)0.082 (3)0.062 (3)0.002 (2)0.005 (2)0.002 (3)
O10.0306 (15)0.100 (3)0.091 (2)0.0024 (15)0.0065 (16)0.020 (2)
Cl10.0948 (11)0.1063 (14)0.0900 (10)0.0151 (10)0.0021 (11)0.0281 (10)
Geometric parameters (Å, º) top
C1—O11.237 (5)C8—C131.396 (7)
C1—N11.311 (6)C8—N11.446 (6)
C1—C21.507 (7)C9—C101.416 (8)
C2—C31.346 (6)C9—C141.506 (8)
C2—C71.389 (7)C10—C111.337 (10)
C3—C41.364 (7)C10—H10A0.9300
C3—Cl11.725 (6)C11—C121.377 (10)
C4—C51.382 (9)C11—H11A0.9300
C4—H4A0.9300C12—C131.342 (8)
C5—C61.356 (11)C12—H12A0.9300
C5—H5A0.9300C13—H13A0.9300
C6—C71.347 (8)C14—H14C0.9600
C6—H6A0.9300C14—H14B0.9600
C7—H7A0.9300C14—H14A0.9600
C8—C91.384 (7)N1—H10.861 (2)
O1—C1—N1125.1 (4)C8—C9—C10115.7 (6)
O1—C1—C2118.7 (4)C8—C9—C14123.7 (5)
N1—C1—C2116.2 (4)C10—C9—C14120.6 (5)
C3—C2—C7118.0 (5)C11—C10—C9121.7 (6)
C3—C2—C1123.3 (5)C11—C10—H10A119.2
C7—C2—C1118.7 (5)C9—C10—H10A119.2
C2—C3—C4121.0 (5)C10—C11—C12121.1 (7)
C2—C3—Cl1121.1 (4)C10—C11—H11A119.5
C4—C3—Cl1117.9 (5)C12—C11—H11A119.5
C3—C4—C5120.2 (6)C13—C12—C11119.6 (6)
C3—C4—H4A119.9C13—C12—H12A120.2
C5—C4—H4A119.9C11—C12—H12A120.2
C6—C5—C4119.2 (7)C12—C13—C8120.1 (6)
C6—C5—H5A120.4C12—C13—H13A120.0
C4—C5—H5A120.4C8—C13—H13A120.0
C7—C6—C5119.9 (6)C9—C14—H14C109.5
C7—C6—H6A120.1C9—C14—H14B109.5
C5—C6—H6A120.1H14C—C14—H14B109.5
C6—C7—C2121.6 (6)C9—C14—H14A109.5
C6—C7—H7A119.2H14C—C14—H14A109.5
C2—C7—H7A119.2H14B—C14—H14A109.5
C9—C8—C13121.6 (5)C1—N1—C8122.0 (4)
C9—C8—N1118.8 (5)C1—N1—H1118 (4)
C13—C8—N1119.6 (5)C8—N1—H1120 (4)
O1—C1—C2—C359.1 (7)C13—C8—C9—C102.0 (7)
N1—C1—C2—C3122.1 (5)N1—C8—C9—C10179.2 (4)
O1—C1—C2—C7120.7 (5)C13—C8—C9—C14177.8 (5)
N1—C1—C2—C758.2 (6)N1—C8—C9—C140.6 (7)
C7—C2—C3—C43.2 (8)C8—C9—C10—C112.9 (9)
C1—C2—C3—C4176.6 (4)C14—C9—C10—C11177.2 (6)
C7—C2—C3—Cl1179.0 (4)C9—C10—C11—C125.8 (10)
C1—C2—C3—Cl11.2 (7)C10—C11—C12—C133.6 (10)
C2—C3—C4—C51.6 (8)C11—C12—C13—C81.3 (8)
Cl1—C3—C4—C5179.5 (5)C9—C8—C13—C124.2 (8)
C3—C4—C5—C60.2 (9)N1—C8—C13—C12178.7 (4)
C4—C5—C6—C70.3 (9)O1—C1—N1—C83.0 (7)
C5—C6—C7—C21.4 (9)C2—C1—N1—C8178.3 (5)
C3—C2—C7—C63.1 (8)C9—C8—N1—C1126.3 (5)
C1—C2—C7—C6176.7 (5)C13—C8—N1—C156.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.00 (1)2.853 (5)171 (5)
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)9.746 (3), 6.077 (3), 20.797 (7)
V3)1231.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.55 × 0.40 × 0.25
Data collection
DiffractometerXcalibur, Ruby, Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.865, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
16249, 2173, 1369
Rint0.097
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.147, 1.10
No. of reflections2173
No. of parameters158
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.14
Absolute structureFlack (1983), 1054 Friedel pairs
Absolute structure parameter0.37 (13)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861 (2)2.000 (10)2.853 (5)171 (5)
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. JS, VV and JK thank the Grant Agencies for their financial support [VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202–10)] and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.  CAS Google Scholar
First citationGowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGowda, B. T. & Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303–3310.  CrossRef CAS Web of Science Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodrigues, V. Z., Gowda, B. T., Vrábel, V. & Kožíšek, J. (2012). Acta Cryst. E68, o723.  CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds