organic compounds
2-Chloro-N-(2-methylphenyl)benzamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, bInstitute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of Technology, Námestie slobody 17, SK-812 37 Bratislava, Slovak Republic, cInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava, Slovak Republic, and dInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com
In the title compound, C14H12ClNO, the two aromatic rings are almost coplanar, making a dihedral angle of 4.08 (18)°. In the crystal, N—H⋯O hydrogen bonds link the molecules into infinite chains running along the a axis.
Related literature
For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000); Rodrigues et al. (2012); Saeed et al. (2010) of N-chloroarylamides, see: Gowda & Rao (1989); Jyothi & Gowda (2004) and of N-bromoarylsulfonamides, see: Gowda & Mahadevappa (1983); Usha & Gowda (2006).
Experimental
Crystal data
|
Data collection
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812023902/bt5935sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023902/bt5935Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812023902/bt5935Isup3.cml
The title compound was prepared by the method similar to the one described by Gowda et al. (2000). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.
Plate like colorless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.
Hydrogen atoms were placed in calculated positions with C–H distances of 0.93 Å (C-aromatic), 0.96 Å (C-methyl) and constrained to ride on their parent atoms. The amide H atom was visible in a difference map and refined with the N—H distance restrained to 0.860 (2) Å. The Uiso(H) values were set at 1.2Ueq (C-aromatic) or 1.5Ueq (C-methyl).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).C14H12ClNO | F(000) = 512 |
Mr = 245.70 | Dx = 1.325 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2182 reflections |
a = 9.746 (3) Å | θ = 3.5–25.0° |
b = 6.077 (3) Å | µ = 0.29 mm−1 |
c = 20.797 (7) Å | T = 295 K |
V = 1231.8 (8) Å3 | Plate, colourless |
Z = 4 | 0.55 × 0.40 × 0.25 mm |
Xcalibur, Ruby, Gemini diffractometer | 2173 independent reflections |
Radiation source: fine-focus sealed tube | 1369 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.097 |
Detector resolution: 10.434 pixels mm-1 | θmax = 25.0°, θmin = 3.5° |
ω scans | h = −11→11 |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] | k = −7→7 |
Tmin = 0.865, Tmax = 0.921 | l = −24→24 |
16249 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.058P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2173 reflections | Δρmax = 0.22 e Å−3 |
158 parameters | Δρmin = −0.14 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 1054 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.37 (13) |
C14H12ClNO | V = 1231.8 (8) Å3 |
Mr = 245.70 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 9.746 (3) Å | µ = 0.29 mm−1 |
b = 6.077 (3) Å | T = 295 K |
c = 20.797 (7) Å | 0.55 × 0.40 × 0.25 mm |
Xcalibur, Ruby, Gemini diffractometer | 2173 independent reflections |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] | 1369 reflections with I > 2σ(I) |
Tmin = 0.865, Tmax = 0.921 | Rint = 0.097 |
16249 measured reflections |
R[F2 > 2σ(F2)] = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.147 | Δρmax = 0.22 e Å−3 |
S = 1.10 | Δρmin = −0.14 e Å−3 |
2173 reflections | Absolute structure: Flack (1983), 1054 Friedel pairs |
158 parameters | Absolute structure parameter: 0.37 (13) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5638 (4) | 0.6837 (8) | 0.4527 (3) | 0.0506 (12) | |
C2 | 0.5037 (4) | 0.5445 (10) | 0.3997 (2) | 0.0497 (14) | |
C3 | 0.5364 (4) | 0.5696 (9) | 0.3373 (3) | 0.0596 (15) | |
C4 | 0.4845 (7) | 0.4319 (12) | 0.2916 (3) | 0.0833 (19) | |
H4A | 0.5099 | 0.4492 | 0.2488 | 0.100* | |
C5 | 0.3941 (6) | 0.2667 (12) | 0.3087 (5) | 0.0850 (17) | |
H5A | 0.3587 | 0.1723 | 0.2777 | 0.102* | |
C6 | 0.3578 (5) | 0.2439 (10) | 0.3713 (4) | 0.0784 (17) | |
H6A | 0.2968 | 0.1338 | 0.3834 | 0.094* | |
C7 | 0.4101 (4) | 0.3811 (10) | 0.4159 (3) | 0.0644 (16) | |
H7A | 0.3830 | 0.3660 | 0.4585 | 0.077* | |
C8 | 0.5196 (4) | 0.9375 (9) | 0.5395 (3) | 0.0552 (14) | |
C9 | 0.4657 (5) | 0.9069 (10) | 0.6004 (3) | 0.0646 (16) | |
C10 | 0.5118 (6) | 1.0562 (13) | 0.6480 (3) | 0.0815 (18) | |
H10A | 0.4756 | 1.0470 | 0.6893 | 0.098* | |
C11 | 0.6062 (7) | 1.2098 (13) | 0.6351 (4) | 0.096 (3) | |
H11A | 0.6403 | 1.2963 | 0.6684 | 0.115* | |
C12 | 0.6535 (5) | 1.2420 (9) | 0.5735 (4) | 0.0813 (19) | |
H12A | 0.7152 | 1.3549 | 0.5647 | 0.098* | |
C13 | 0.6101 (4) | 1.1096 (10) | 0.5260 (3) | 0.0679 (17) | |
H13A | 0.6402 | 1.1324 | 0.4841 | 0.082* | |
C14 | 0.3642 (5) | 0.7289 (9) | 0.6169 (3) | 0.0664 (16) | |
H14C | 0.3400 | 0.7395 | 0.6615 | 0.100* | |
H14B | 0.4044 | 0.5875 | 0.6086 | 0.100* | |
H14A | 0.2833 | 0.7461 | 0.5910 | 0.100* | |
N1 | 0.4759 (4) | 0.7929 (8) | 0.4882 (2) | 0.0611 (12) | |
H1 | 0.3902 (14) | 0.785 (9) | 0.479 (3) | 0.070 (17)* | |
O1 | 0.6897 (3) | 0.6844 (6) | 0.46020 (18) | 0.0739 (11) | |
Cl1 | 0.64973 (16) | 0.7710 (3) | 0.31282 (10) | 0.0971 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.042 (2) | 0.046 (3) | 0.063 (3) | 0.001 (2) | −0.005 (2) | −0.001 (3) |
C2 | 0.029 (2) | 0.071 (4) | 0.049 (3) | 0.006 (2) | −0.002 (2) | −0.002 (2) |
C3 | 0.044 (3) | 0.076 (4) | 0.059 (4) | 0.006 (2) | 0.000 (3) | −0.003 (3) |
C4 | 0.088 (4) | 0.102 (6) | 0.060 (4) | 0.024 (4) | −0.003 (3) | −0.011 (4) |
C5 | 0.076 (4) | 0.082 (4) | 0.097 (5) | 0.004 (3) | −0.012 (4) | −0.035 (4) |
C6 | 0.064 (4) | 0.078 (5) | 0.093 (5) | −0.010 (3) | −0.004 (3) | −0.020 (4) |
C7 | 0.042 (3) | 0.081 (4) | 0.070 (4) | −0.004 (2) | 0.001 (2) | −0.004 (3) |
C8 | 0.036 (2) | 0.063 (4) | 0.067 (4) | 0.010 (3) | −0.011 (3) | −0.017 (3) |
C9 | 0.054 (3) | 0.074 (4) | 0.066 (4) | 0.020 (3) | −0.015 (3) | −0.011 (4) |
C10 | 0.065 (3) | 0.114 (6) | 0.065 (4) | 0.020 (4) | −0.002 (3) | −0.010 (4) |
C11 | 0.090 (5) | 0.104 (6) | 0.094 (6) | 0.015 (4) | −0.028 (4) | −0.049 (5) |
C12 | 0.061 (3) | 0.067 (4) | 0.116 (6) | 0.001 (3) | −0.015 (3) | −0.023 (4) |
C13 | 0.046 (3) | 0.077 (5) | 0.080 (4) | 0.002 (3) | −0.003 (3) | −0.006 (4) |
C14 | 0.059 (3) | 0.069 (4) | 0.071 (4) | −0.001 (3) | −0.006 (2) | 0.015 (3) |
N1 | 0.039 (2) | 0.082 (3) | 0.062 (3) | 0.002 (2) | −0.005 (2) | 0.002 (3) |
O1 | 0.0306 (15) | 0.100 (3) | 0.091 (2) | 0.0024 (15) | −0.0065 (16) | −0.020 (2) |
Cl1 | 0.0948 (11) | 0.1063 (14) | 0.0900 (10) | −0.0151 (10) | 0.0021 (11) | 0.0281 (10) |
C1—O1 | 1.237 (5) | C8—C13 | 1.396 (7) |
C1—N1 | 1.311 (6) | C8—N1 | 1.446 (6) |
C1—C2 | 1.507 (7) | C9—C10 | 1.416 (8) |
C2—C3 | 1.346 (6) | C9—C14 | 1.506 (8) |
C2—C7 | 1.389 (7) | C10—C11 | 1.337 (10) |
C3—C4 | 1.364 (7) | C10—H10A | 0.9300 |
C3—Cl1 | 1.725 (6) | C11—C12 | 1.377 (10) |
C4—C5 | 1.382 (9) | C11—H11A | 0.9300 |
C4—H4A | 0.9300 | C12—C13 | 1.342 (8) |
C5—C6 | 1.356 (11) | C12—H12A | 0.9300 |
C5—H5A | 0.9300 | C13—H13A | 0.9300 |
C6—C7 | 1.347 (8) | C14—H14C | 0.9600 |
C6—H6A | 0.9300 | C14—H14B | 0.9600 |
C7—H7A | 0.9300 | C14—H14A | 0.9600 |
C8—C9 | 1.384 (7) | N1—H1 | 0.861 (2) |
O1—C1—N1 | 125.1 (4) | C8—C9—C10 | 115.7 (6) |
O1—C1—C2 | 118.7 (4) | C8—C9—C14 | 123.7 (5) |
N1—C1—C2 | 116.2 (4) | C10—C9—C14 | 120.6 (5) |
C3—C2—C7 | 118.0 (5) | C11—C10—C9 | 121.7 (6) |
C3—C2—C1 | 123.3 (5) | C11—C10—H10A | 119.2 |
C7—C2—C1 | 118.7 (5) | C9—C10—H10A | 119.2 |
C2—C3—C4 | 121.0 (5) | C10—C11—C12 | 121.1 (7) |
C2—C3—Cl1 | 121.1 (4) | C10—C11—H11A | 119.5 |
C4—C3—Cl1 | 117.9 (5) | C12—C11—H11A | 119.5 |
C3—C4—C5 | 120.2 (6) | C13—C12—C11 | 119.6 (6) |
C3—C4—H4A | 119.9 | C13—C12—H12A | 120.2 |
C5—C4—H4A | 119.9 | C11—C12—H12A | 120.2 |
C6—C5—C4 | 119.2 (7) | C12—C13—C8 | 120.1 (6) |
C6—C5—H5A | 120.4 | C12—C13—H13A | 120.0 |
C4—C5—H5A | 120.4 | C8—C13—H13A | 120.0 |
C7—C6—C5 | 119.9 (6) | C9—C14—H14C | 109.5 |
C7—C6—H6A | 120.1 | C9—C14—H14B | 109.5 |
C5—C6—H6A | 120.1 | H14C—C14—H14B | 109.5 |
C6—C7—C2 | 121.6 (6) | C9—C14—H14A | 109.5 |
C6—C7—H7A | 119.2 | H14C—C14—H14A | 109.5 |
C2—C7—H7A | 119.2 | H14B—C14—H14A | 109.5 |
C9—C8—C13 | 121.6 (5) | C1—N1—C8 | 122.0 (4) |
C9—C8—N1 | 118.8 (5) | C1—N1—H1 | 118 (4) |
C13—C8—N1 | 119.6 (5) | C8—N1—H1 | 120 (4) |
O1—C1—C2—C3 | −59.1 (7) | C13—C8—C9—C10 | −2.0 (7) |
N1—C1—C2—C3 | 122.1 (5) | N1—C8—C9—C10 | −179.2 (4) |
O1—C1—C2—C7 | 120.7 (5) | C13—C8—C9—C14 | 177.8 (5) |
N1—C1—C2—C7 | −58.2 (6) | N1—C8—C9—C14 | 0.6 (7) |
C7—C2—C3—C4 | −3.2 (8) | C8—C9—C10—C11 | −2.9 (9) |
C1—C2—C3—C4 | 176.6 (4) | C14—C9—C10—C11 | 177.2 (6) |
C7—C2—C3—Cl1 | 179.0 (4) | C9—C10—C11—C12 | 5.8 (10) |
C1—C2—C3—Cl1 | −1.2 (7) | C10—C11—C12—C13 | −3.6 (10) |
C2—C3—C4—C5 | 1.6 (8) | C11—C12—C13—C8 | −1.3 (8) |
Cl1—C3—C4—C5 | 179.5 (5) | C9—C8—C13—C12 | 4.2 (8) |
C3—C4—C5—C6 | 0.2 (9) | N1—C8—C13—C12 | −178.7 (4) |
C4—C5—C6—C7 | −0.3 (9) | O1—C1—N1—C8 | 3.0 (7) |
C5—C6—C7—C2 | −1.4 (9) | C2—C1—N1—C8 | −178.3 (5) |
C3—C2—C7—C6 | 3.1 (8) | C9—C8—N1—C1 | −126.3 (5) |
C1—C2—C7—C6 | −176.7 (5) | C13—C8—N1—C1 | 56.4 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 (1) | 2.00 (1) | 2.853 (5) | 171 (5) |
Symmetry code: (i) x−1/2, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | C14H12ClNO |
Mr | 245.70 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 295 |
a, b, c (Å) | 9.746 (3), 6.077 (3), 20.797 (7) |
V (Å3) | 1231.8 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.55 × 0.40 × 0.25 |
Data collection | |
Diffractometer | Xcalibur, Ruby, Gemini diffractometer |
Absorption correction | Analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.865, 0.921 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16249, 2173, 1369 |
Rint | 0.097 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.147, 1.10 |
No. of reflections | 2173 |
No. of parameters | 158 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.22, −0.14 |
Absolute structure | Flack (1983), 1054 Friedel pairs |
Absolute structure parameter | 0.37 (13) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.861 (2) | 2.000 (10) | 2.853 (5) | 171 (5) |
Symmetry code: (i) x−1/2, −y+3/2, z. |
Acknowledgements
VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. JS, VV and JK thank the Grant Agencies for their financial support [VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202–10)] and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.
References
Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728. CAS Google Scholar
Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362. CrossRef PubMed CAS Web of Science Google Scholar
Gowda, B. T. & Rao, P. J. M. (1989). Bull. Chem. Soc. Jpn, 62, 3303–3310. CrossRef CAS Web of Science Google Scholar
Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68. CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rodrigues, V. Z., Gowda, B. T., Vrábel, V. & Kožíšek, J. (2012). Acta Cryst. E68, o723. CSD CrossRef IUCr Journals Google Scholar
Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000; Rodrigues et al., 2012; Saeed et al., 2010), N-chloroarylsulfonamides(Gowda & Rao, 1989; Jyothi & Gowda, 2004) and N-bromoarylsulfonamides(Gowda & Mahadevappa, 1983; Usha & Gowda, 2006), in the present work, the crystal structure of 2-chloro-N-(2-methylphenyl)benzamide has been determined (Fig.1).
In the title compound, the ortho-Cl atom in the benzoyl ring is positioned syn to the C=O bond, similar to that observed in 2-chloro-N-(3-methylphenyl)benzamide (I) (Rodrigues et al., 2012). The ortho-methyl group in the anilino ring is also positioned syn to the N—H bond, in contrast to the anti conformation observed between the meta-methyl group and the N—H bond in (I).
The central amide core –NH—C(=O)– group is twisted by 58.77 (27)° and 56.30 (28)° out of the planes of the 2-chlorophenyl and 2-methylphenyl rings, respectively, while the two aromatic rings make only a dihedral angle of 4.08 (18)°, compared to the value of 38.7 (1)° in (I)
In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite chains running along the a-axis. Part of the crystal structure is shown in Fig. 2.