organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9,10-Di­hydro-7H-benzo[de]imidazo[2,1-a]isoquinolin-7-one

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: chenyumei@hpu.edu.cn

(Received 24 April 2012; accepted 19 May 2012; online 26 May 2012)

In the title compound, C14H10N2O, all non-H atoms are essentially coplanar (r.m.s. deviation = 0.013 Å). The crystal structure is stabilized by ππ stacking inter­actions [centroid–centroid distance = 3.506 (3) Å].

Related literature

For the use of rigid ligands in the formation of metal-organic coordination polymers, see: Chen et al. (2006[Chen, J.-M., Sun, J.-J., Huang, W.-W., Lao, Y.-N. & Yang, S.-P. (2006). Acta Cryst. E62, m2573-m2574.]); Yang et al. (2009[Yang, H., Lao, Y. N., Chen, J. M., Wu, H. X. & Yang, S. P. (2009). Eur. J. Inorg. Chem. pp. 2817-2824.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O

  • Mr = 222.24

  • Orthorhombic, P 21 21 21

  • a = 4.4949 (2) Å

  • b = 14.9891 (9) Å

  • c = 15.1357 (8) Å

  • V = 1019.76 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.995

  • 8736 measured reflections

  • 1837 independent reflections

  • 1207 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.202

  • S = 1.01

  • 1837 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, C14H10N2O, (I) can be used as a rigid ligand to form metal-organic coordination polymers, such as [Ag(C14H10N2O)(NO3)]n, [Ag(C14H10N2O)2(NO3)]n, [Ag(C14H10N2O)2 (BF4)]n (Yang et al., 2009) and [Cu2(CH3COO)4(C14H10N2O)2]n (Chen et al., 2006). However, the crystal structure of 9,10-dihydro-7H-benzo[de]imidazo[2,1-a]-isoquinolin-7-one have not been reported so far. We report herein the synthesize and the crystal structure of (I). In the title molecule , C14H10N2O, all non-H atoms are essentially coplanar (r.m.s. 0.013 Å). The crystal structure is stabilized by ππ stacking interactions (centroid -centroid distance 3.506 (3)Å, Cg =C4/C5/C6/C7/C8/C9 ; Cgi =C4/C5/C6/C7/C8/C9 ; symmetry code (i) x-1, y, z)

Related literature top

For the use of rigid ligands in the formation of metal-organic coordination polymers, see: Chen et al. (2006); Yang et al. (2009).

Experimental top

White prism-shaped single crystals of 9,10-dihydro-7H-benzo[de]imidazo[2,1-a]-isoquinolin-7-one were initially obtained from the hydrothermal reaction of Naphthalene-1,8-dicarboxylic anhydride (0.3 g), ethylenediamine (5 ml) and H2O (10 ml) using Teflon lined bomb at 160°C for 5 days and then cooled to room temperature. A few single crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

Constraint instruction 'DELU 0.01 C14 N2' was used in the refinement. The final difference map shows that the highest peak is 0.27 e/Å3 at 1.55 Å from O(1), while the deepest hole is -0.33 e/Å3 at 0.16 Å from H(13B). H atoms were placed in geometrically calculated positions with C—H distances in the range 0.93-0.97Å and were refined using a riding model, with Uiso(H)=1.2Ueq(C). Friedel pairs (715) were merged.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
9,10-Dihydro-7H-benzo[de]imidazo[2,1-a]isoquinolin-7-one top
Crystal data top
C14H10N2OF(000) = 464
Mr = 222.24Dx = 1.448 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 946 reflections
a = 4.4949 (2) Åθ = 2.7–19.8°
b = 14.9891 (9) ŵ = 0.09 mm1
c = 15.1357 (8) ÅT = 296 K
V = 1019.76 (9) Å3Prism, colourless
Z = 40.20 × 0.05 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1837 independent reflections
Radiation source: fine-focus sealed tube1207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 83.33 pixels mm-1θmax = 25.5°, θmin = 1.9°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1816
Tmin = 0.982, Tmax = 0.995l = 1816
8736 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.9931P]
where P = (Fo2 + 2Fc2)/3
1837 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.33 e Å3
1 constraint
Crystal data top
C14H10N2OV = 1019.76 (9) Å3
Mr = 222.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.4949 (2) ŵ = 0.09 mm1
b = 14.9891 (9) ÅT = 296 K
c = 15.1357 (8) Å0.20 × 0.05 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1837 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1207 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.995Rint = 0.046
8736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0751 restraint
wR(F2) = 0.202H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
1837 reflectionsΔρmin = 0.33 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8099 (9)0.5958 (3)0.5858 (3)0.0586 (11)
C90.4344 (11)0.4484 (3)0.5830 (3)0.0526 (11)
C100.5848 (10)0.4693 (3)0.6615 (3)0.0537 (11)
C120.6647 (12)0.5790 (3)0.5059 (3)0.0614 (14)
C110.7765 (11)0.5470 (3)0.6614 (3)0.0556 (11)
C50.0907 (13)0.3543 (4)0.4989 (4)0.0772 (17)
H50.03660.30550.49630.093*
C10.5498 (12)0.4169 (4)0.7347 (3)0.0692 (14)
H10.64870.43080.78680.083*
O10.7130 (11)0.6295 (2)0.4429 (2)0.0886 (14)
C80.4680 (11)0.5014 (3)0.5046 (3)0.0557 (12)
C40.2423 (12)0.3730 (3)0.5796 (3)0.0620 (13)
C70.3183 (12)0.4788 (4)0.4287 (3)0.0673 (14)
H70.34570.51300.37810.081*
N20.9310 (11)0.5775 (3)0.7269 (3)0.0773 (13)
C30.2118 (14)0.3213 (4)0.6554 (4)0.0774 (16)
H30.08630.27200.65470.093*
C131.0057 (13)0.6648 (3)0.6011 (4)0.0778 (17)
H13A0.91150.72230.59210.093*
H13B1.17940.66040.56330.093*
C60.1267 (13)0.4058 (4)0.4255 (4)0.0805 (17)
H60.02420.39240.37380.097*
C20.3623 (14)0.3418 (4)0.7303 (4)0.0825 (18)
H20.34130.30550.77970.099*
C141.0800 (16)0.6516 (4)0.6897 (5)0.100 (2)
H14A1.02970.70480.72300.120*
H14B1.29310.64250.69450.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.061 (3)0.056 (2)0.060 (3)0.003 (2)0.006 (2)0.006 (2)
C90.052 (3)0.054 (3)0.051 (3)0.013 (2)0.011 (2)0.003 (2)
C100.050 (2)0.061 (3)0.051 (3)0.012 (2)0.006 (2)0.002 (2)
C120.068 (3)0.054 (3)0.062 (3)0.016 (3)0.011 (3)0.002 (2)
C110.047 (3)0.061 (3)0.059 (3)0.010 (3)0.005 (2)0.008 (2)
C50.057 (3)0.079 (4)0.095 (5)0.001 (3)0.011 (3)0.028 (3)
C10.066 (3)0.083 (4)0.059 (3)0.018 (3)0.007 (3)0.005 (3)
O10.118 (3)0.074 (2)0.074 (2)0.006 (3)0.021 (3)0.021 (2)
C80.050 (3)0.058 (2)0.060 (3)0.014 (2)0.003 (2)0.001 (2)
C40.051 (3)0.060 (3)0.075 (3)0.009 (3)0.011 (3)0.008 (3)
C70.067 (3)0.081 (4)0.054 (3)0.015 (3)0.000 (3)0.004 (3)
N20.077 (3)0.081 (3)0.074 (3)0.003 (3)0.007 (3)0.014 (2)
C30.070 (4)0.067 (3)0.095 (4)0.006 (3)0.023 (3)0.007 (3)
C130.068 (4)0.059 (3)0.106 (5)0.011 (3)0.019 (3)0.020 (3)
C60.072 (4)0.098 (4)0.072 (4)0.005 (4)0.008 (3)0.023 (4)
C20.081 (4)0.084 (4)0.083 (4)0.014 (3)0.019 (3)0.024 (3)
C140.083 (4)0.097 (5)0.120 (6)0.010 (4)0.015 (4)0.041 (4)
Geometric parameters (Å, º) top
N1—C111.367 (5)C1—H10.9300
N1—C131.377 (6)C8—C71.375 (7)
N1—C121.397 (6)C4—C31.391 (7)
C9—C101.402 (6)C7—C61.392 (7)
C9—C41.423 (6)C7—H70.9300
C9—C81.436 (6)N2—C141.414 (8)
C10—C11.367 (7)C3—C21.355 (8)
C10—C111.448 (6)C3—H30.9300
C12—O11.236 (5)C13—C141.396 (8)
C12—C81.462 (7)C13—H13A0.9700
C11—N21.295 (6)C13—H13B0.9700
C5—C61.363 (8)C6—H60.9300
C5—C41.426 (7)C2—H20.9300
C5—H50.9300C14—H14A0.9700
C1—C21.408 (8)C14—H14B0.9700
C11—N1—C13109.4 (4)C9—C4—C5118.5 (5)
C11—N1—C12125.2 (4)C8—C7—C6121.7 (5)
C13—N1—C12125.4 (5)C8—C7—H7119.2
C10—C9—C4120.1 (4)C6—C7—H7119.2
C10—C9—C8121.7 (4)C11—N2—C14103.1 (5)
C4—C9—C8118.2 (4)C2—C3—C4121.0 (6)
C1—C10—C9120.2 (5)C2—C3—H3119.5
C1—C10—C11122.1 (5)C4—C3—H3119.5
C9—C10—C11117.8 (4)N1—C13—C14102.0 (5)
O1—C12—N1118.4 (5)N1—C13—H13A111.4
O1—C12—C8125.7 (5)C14—C13—H13A111.4
N1—C12—C8116.0 (4)N1—C13—H13B111.4
N2—C11—N1113.1 (4)C14—C13—H13B111.4
N2—C11—C10127.0 (5)H13A—C13—H13B109.2
N1—C11—C10119.8 (4)C5—C6—C7119.3 (5)
C6—C5—C4122.0 (6)C5—C6—H6120.3
C6—C5—H5119.0C7—C6—H6120.3
C4—C5—H5119.0C3—C2—C1121.3 (5)
C10—C1—C2119.3 (5)C3—C2—H2119.3
C10—C1—H1120.3C1—C2—H2119.3
C2—C1—H1120.3C13—C14—N2112.4 (6)
C7—C8—C9120.2 (5)C13—C14—H14A109.1
C7—C8—C12120.3 (5)N2—C14—H14A109.1
C9—C8—C12119.6 (4)C13—C14—H14B109.1
C3—C4—C9118.1 (5)N2—C14—H14B109.1
C3—C4—C5123.4 (6)H14A—C14—H14B107.9

Experimental details

Crystal data
Chemical formulaC14H10N2O
Mr222.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.4949 (2), 14.9891 (9), 15.1357 (8)
V3)1019.76 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
8736, 1837, 1207
Rint0.046
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.202, 1.01
No. of reflections1837
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.33

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J.-M., Sun, J.-J., Huang, W.-W., Lao, Y.-N. & Yang, S.-P. (2006). Acta Cryst. E62, m2573–m2574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H., Lao, Y. N., Chen, J. M., Wu, H. X. & Yang, S. P. (2009). Eur. J. Inorg. Chem. pp. 2817–2824.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds