organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-methyl­piperidinium) naphthalene-1,5-di­sulfonate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xqchem@yahoo.com.cn

(Received 24 April 2012; accepted 4 May 2012; online 12 May 2012)

The asymmetric unit of the title compound, 2C6H14N+·C10H6O6S22−, contains one 3-methyl­piperidinium cation and one-half of the centrosymmetric naphthalene-1,5-disulfonate anion. In the crystal, anions and cations are linked through N—H⋯O hydrogen bonds into layers parallel to (101).

Related literature

The crystal structure of the related bis­(2-methyl­piperidinium) penta­chloridoanti­monate(III) has been reported by Xu (2012[Xu, Q. (2012). Acta Cryst. E68, m671.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H14N+·C10H6O6S22−

  • Mr = 486.63

  • Monoclinic, C 2/c

  • a = 18.100 (4) Å

  • b = 9.1763 (18) Å

  • c = 15.151 (3) Å

  • β = 102.06 (3)°

  • V = 2460.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.34 × 0.27 × 0.22 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.993

  • 12253 measured reflections

  • 2816 independent reflections

  • 1835 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.151

  • S = 1.03

  • 2816 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2 0.90 2.01 2.855 (3) 156
N1—H1D⋯O1i 0.90 1.91 2.804 (3) 175
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SCXmini (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: SCXmini; data reduction: SCXmini; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a continuation of a structural study of new potent ferroelectric materials containing methylpiperidinium cations (Xu, 2012), we present here the title compound, (I).

The asymmetric unit of (I) contains one 3-methylpiperidinium cation and one-half of the centrosymmetric naphthalene-1,5-disulfonate anion (Fig. 1). Intermolecular N—H···O hydrogen bonds (Table 1, Fig. 2) link anions and cations into layers parallel to (101).

Related literature top

The crystal structure of the related bis(2-methylpiperidinium) pentachloridoantimonate(III) has been reported by Xu (2012).

Experimental top

A mixture of 3-methylpiperdine (0.98 g, 10 mmol), 1,5-naphthalenedisulfonic acid (2.5 g, 10 mmol) in a water was stirred for several days at ambient temperature to obtain colourless crystals.

Refinement top

H atoms were geometrically positioned (C—H 0.93–0.97 Å; N—H 0.90 Å), and refined as riding, with Uiso(H)=1.2–1.5 Ueq(C, N).

Computing details top

Data collection: SCXmini (Rigaku, 2006); cell refinement: SCXmini (Rigaku, 2006); data reduction: SCXmini (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level [symmetry code: (A) -x, 1 - y, -z]. Dashed line denotes hydrogen bond.
[Figure 2] Fig. 2. A portion of the crystal packing viewed down the c axis. Hydrogen bonds are shown as dashed lines.
Bis(3-methylpiperidinium) naphthalene-1,5-disulfonate top
Crystal data top
2C6H14N+·C10H6O6S22F(000) = 1040
Mr = 486.63Dx = 1.313 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2816 reflections
a = 18.100 (4) Åθ = 3.1–27.5°
b = 9.1763 (18) ŵ = 0.26 mm1
c = 15.151 (3) ÅT = 293 K
β = 102.06 (3)°Prism, colourless
V = 2460.9 (8) Å30.34 × 0.27 × 0.22 mm
Z = 4
Data collection top
Rigaku Mercury70 CCD
diffractometer
2816 independent reflections
Radiation source: fine-focus sealed tube1835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 2223
Tmin = 0.965, Tmax = 0.993k = 1111
12253 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0675P)2 + 2.1939P]
where P = (Fo2 + 2Fc2)/3
2816 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
2C6H14N+·C10H6O6S22V = 2460.9 (8) Å3
Mr = 486.63Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.100 (4) ŵ = 0.26 mm1
b = 9.1763 (18) ÅT = 293 K
c = 15.151 (3) Å0.34 × 0.27 × 0.22 mm
β = 102.06 (3)°
Data collection top
Rigaku Mercury70 CCD
diffractometer
2816 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1835 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.993Rint = 0.051
12253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.03Δρmax = 0.65 e Å3
2816 reflectionsΔρmin = 0.28 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29821 (16)0.5641 (4)0.3876 (2)0.0640 (8)
H1A0.26070.49470.39870.077*
H1B0.27540.66020.38290.077*
C20.36527 (17)0.5617 (4)0.4661 (2)0.0627 (8)
H20.38510.46200.47270.075*
C30.42612 (18)0.6595 (4)0.4453 (3)0.0757 (10)
H3A0.47100.64970.49270.091*
H3B0.40940.76000.44490.091*
C40.44594 (19)0.6248 (5)0.3555 (3)0.0841 (11)
H4A0.48280.69470.34340.101*
H4B0.46850.52850.35810.101*
C50.3770 (2)0.6296 (4)0.2807 (3)0.0745 (10)
H5A0.35660.72770.27450.089*
H5B0.39020.60230.22410.089*
C60.3419 (3)0.6035 (6)0.5532 (3)0.1106 (15)
H6A0.31980.69900.54710.166*
H6B0.38540.60330.60180.166*
H6C0.30550.53450.56570.166*
C70.02115 (13)0.5265 (3)0.04203 (16)0.0363 (6)
C80.09422 (13)0.5875 (3)0.04328 (17)0.0401 (6)
C90.12180 (15)0.5968 (3)0.03345 (19)0.0491 (7)
H90.16870.63940.03160.059*
C100.01080 (15)0.5181 (3)0.11938 (18)0.0463 (7)
H100.01600.55470.17400.056*
C110.08005 (16)0.5426 (3)0.11543 (19)0.0538 (7)
H110.09980.54820.16730.065*
N10.32008 (12)0.5276 (3)0.30185 (17)0.0556 (7)
H1C0.27880.52980.25690.067*
H1D0.33880.43650.30520.067*
O10.11209 (11)0.7517 (2)0.18646 (14)0.0616 (6)
O20.16835 (11)0.5125 (2)0.20070 (14)0.0660 (6)
O30.22131 (11)0.7037 (2)0.12446 (15)0.0667 (6)
S10.15360 (4)0.64375 (7)0.14678 (5)0.0470 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0435 (16)0.075 (2)0.071 (2)0.0021 (15)0.0072 (15)0.0047 (18)
C20.0613 (19)0.0546 (18)0.066 (2)0.0005 (15)0.0021 (16)0.0012 (16)
C30.063 (2)0.060 (2)0.091 (3)0.0163 (16)0.0146 (18)0.0074 (18)
C40.057 (2)0.083 (3)0.112 (3)0.0254 (19)0.016 (2)0.007 (2)
C50.086 (2)0.066 (2)0.072 (2)0.0020 (19)0.0185 (19)0.0072 (18)
C60.129 (4)0.130 (4)0.072 (3)0.000 (3)0.019 (3)0.005 (3)
C70.0346 (12)0.0353 (13)0.0356 (13)0.0082 (10)0.0003 (10)0.0027 (10)
C80.0342 (12)0.0392 (13)0.0436 (15)0.0049 (10)0.0003 (11)0.0013 (11)
C90.0373 (14)0.0532 (17)0.0561 (17)0.0006 (12)0.0083 (12)0.0004 (13)
C100.0438 (14)0.0526 (16)0.0386 (14)0.0018 (12)0.0001 (11)0.0003 (12)
C110.0509 (16)0.069 (2)0.0421 (15)0.0000 (14)0.0120 (13)0.0001 (14)
N10.0452 (13)0.0484 (13)0.0630 (15)0.0077 (11)0.0122 (12)0.0001 (12)
O10.0608 (12)0.0539 (12)0.0676 (13)0.0040 (10)0.0075 (11)0.0187 (10)
O20.0629 (13)0.0571 (13)0.0623 (13)0.0007 (10)0.0233 (10)0.0095 (10)
O30.0442 (11)0.0723 (14)0.0791 (15)0.0137 (10)0.0026 (10)0.0100 (12)
S10.0399 (4)0.0442 (4)0.0493 (4)0.0003 (3)0.0077 (3)0.0029 (3)
Geometric parameters (Å, º) top
C1—N11.474 (4)C6—H6C0.9600
C1—C21.512 (4)C7—C101.413 (4)
C1—H1A0.9700C7—C7i1.427 (5)
C1—H1B0.9700C7—C81.433 (3)
C2—C31.504 (4)C8—C91.360 (4)
C2—C61.517 (5)C8—S11.782 (3)
C2—H20.9800C9—C111.403 (4)
C3—C41.512 (5)C9—H90.9300
C3—H3A0.9700C10—C11i1.361 (4)
C3—H3B0.9700C10—H100.9300
C4—C51.501 (5)C11—C10i1.361 (4)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700N1—H1C0.9000
C5—N11.476 (4)N1—H1D0.9000
C5—H5A0.9700O1—S11.447 (2)
C5—H5B0.9700O2—S11.449 (2)
C6—H6A0.9600O3—S11.447 (2)
C6—H6B0.9600
N1—C1—C2111.8 (2)H6A—C6—H6B109.5
N1—C1—H1A109.3C2—C6—H6C109.5
C2—C1—H1A109.3H6A—C6—H6C109.5
N1—C1—H1B109.3H6B—C6—H6C109.5
C2—C1—H1B109.3C10—C7—C7i119.0 (3)
H1A—C1—H1B107.9C10—C7—C8123.1 (2)
C3—C2—C6112.4 (3)C7i—C7—C8117.8 (3)
C3—C2—C1109.3 (3)C9—C8—C7121.0 (2)
C6—C2—C1110.9 (3)C9—C8—S1118.2 (2)
C3—C2—H2108.1C7—C8—S1120.68 (19)
C6—C2—H2108.1C8—C9—C11120.6 (2)
C1—C2—H2108.1C8—C9—H9119.7
C2—C3—C4112.6 (3)C11—C9—H9119.7
C2—C3—H3A109.1C11i—C10—C7121.2 (2)
C4—C3—H3A109.1C11i—C10—H10119.4
C2—C3—H3B109.1C7—C10—H10119.4
C4—C3—H3B109.1C10i—C11—C9120.3 (3)
H3A—C3—H3B107.8C10i—C11—H11119.8
C5—C4—C3110.9 (3)C9—C11—H11119.8
C5—C4—H4A109.5C1—N1—C5112.1 (3)
C3—C4—H4A109.5C1—N1—H1C109.2
C5—C4—H4B109.5C5—N1—H1C109.2
C3—C4—H4B109.5C1—N1—H1D109.2
H4A—C4—H4B108.0C5—N1—H1D109.2
N1—C5—C4109.0 (3)H1C—N1—H1D107.9
N1—C5—H5A109.9O3—S1—O1112.05 (13)
C4—C5—H5A109.9O3—S1—O2112.52 (13)
N1—C5—H5B109.9O1—S1—O2112.66 (14)
C4—C5—H5B109.9O3—S1—C8106.81 (13)
H5A—C5—H5B108.3O1—S1—C8107.07 (12)
C2—C6—H6A109.5O2—S1—C8105.17 (12)
C2—C6—H6B109.5
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.902.012.855 (3)156
N1—H1D···O1ii0.901.912.804 (3)175
Symmetry code: (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C6H14N+·C10H6O6S22
Mr486.63
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.100 (4), 9.1763 (18), 15.151 (3)
β (°) 102.06 (3)
V3)2460.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.34 × 0.27 × 0.22
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.965, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
12253, 2816, 1835
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.151, 1.03
No. of reflections2816
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.28

Computer programs: SCXmini (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.902.012.855 (3)156.1
N1—H1D···O1i0.901.912.804 (3)174.5
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20701007) and Jiangsu Province (grant No. BK2008286).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Q. (2012). Acta Cryst. E68, m671.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds