organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1866-o1867

1-{[(2,3-Di­hydro-1H-inden-2-yl)­­oxy]meth­yl}quinazoline-2,4(1H,3H)-dione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia, and bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: gunesd@omu.edu.tr

(Received 26 April 2012; accepted 16 May 2012; online 23 May 2012)

In the title mol­ecule, C18H16N2O3, the five-membered ring has an envelope conformation, with the substituted C atom deviating by 0.342 (4) Å from the mean plane P calculated for the remainder of the non-H atoms of the 2,3-dihydro-1H-indene fragment. The mean planes of quinazoline-2,4(1H,3H)-dione fragment and P form a dihedral angle of 59.08 (4)°. In the crystal, pairs of N—H⋯O hydrogen bonds link mol­ecules into inversion dimers, and weak C—H⋯O hydrogen bonds and ππ inter­actions between the benzene rings of the quinazoline ring systems [centroid–centroid distance = 3.538 (3) Å] further consolidate the packing.

Related literature

For the biological activity of quinazoline-2,4(1H,3H)-diones, see: Tran et al. (2004[Tran, T. P., Ellsworth, E. L., Stier, M. A., Domagala, J. M., Showalter, H. D., Gracheck, S. J., Shapiro, M. A., Joannides, T. E. & Singh, R. (2004). Bioorg. Med. Chem. Lett. 14, 4405-4409.]); Cao et al. (2010[Cao, S.-L., Wang, Y., Zhu, L., Liao, J., Guo, Y.-W., Chen, L.-L., Liu, H.-Q. & Xu, X. (2010). Eur. J. Med. Chem. 45, 3850-3857.]) and for the biological activity of non-nucleoside reverse transcriptase inhibitors (NNRTIs), see: Hopkins et al. (1996[Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589-1600.], 1999[Hopkins, A. L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D. I. & Stammers, D. K. (1999). J. Med. Chem. 42, 4500-4505.]); El-Brollosy (2006[El-Brollosy, N. R. (2006). J. Heterocycl. Chem. 43, 1435-1440.], 2007[El-Brollosy, N. R. (2007). J. Chem. Res. pp. 358-361.]); El-Brollosy et al. (2008[El-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9-19.], 2009[El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663-670.]). For related structures, see: Liu (2008[Liu, G. (2008). Acta Cryst. E64, o1677.]); Karimova et al. (2010[Karimova, G., Ashurov, J., Mukhamedov, N., Parpiev, N. A. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o1547.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O3

  • Mr = 308.33

  • Triclinic, [P \overline 1]

  • a = 7.6684 (8) Å

  • b = 10.0717 (10) Å

  • c = 10.6748 (11) Å

  • α = 87.199 (8)°

  • β = 78.332 (8)°

  • γ = 70.569 (8)°

  • V = 761.28 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.58 × 0.38 × 0.05 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.948, Tmax = 0.995

  • 11601 measured reflections

  • 3156 independent reflections

  • 2078 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.103

  • S = 1.00

  • 3156 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.06 2.9106 (18) 169
C9—H9A⋯O2ii 0.97 2.56 3.527 (3) 173
C16—H16⋯O1iii 0.93 2.47 3.378 (2) 166
C10—H10A⋯O3iv 0.97 2.46 3.404 (2) 165
C5—H5⋯O3v 0.93 2.47 3.314 (2) 151
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z; (v) x+1, y+1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are very promising therapies in the treatment of human immunodeficiency virus (HIV) (Hopkins et al., 1996, 1999). Some series of 3-hydroxyquinazoline-2,4-dione and N-((2-methyl-4(3H)-quinazolinon-6-yl)methyl)dithiocarbamates have been synthesized and evulated for antibacterial activity (Tran et al. 2004; Cao et al. 2010). In continuation to our interest in NNRTIs (El-Brollosy et al. 2006, 2007, 2008, 2009), we synthesized the title compound, (I), as a potential non-nucleoside reverse transcriptase inhibitor.

In (I) (Fig. 1), in the 2,3-dihydro-1H-indene fragment atom C1deviates from the main plane P at 0.342 (4) Å. In the literature, some quinazoline-2,4(1H,3H)-dione structures have been reported (Liu, 2008; Karimova et al. 2010). The C11O2 and C12O3 bond lengths are 1.2247 (19) and 1.2144 (18) Å, respectively. The CC bond distances range from 1.362 (3) Å to1.394 (2) Å. The torsion angle C1—O1—C10—N1 is -93.88 (17)°.

In the crystal, intermolecular N2—H2···O2 hydrogen bond (Table 1) link two molecules into centrosymmetric dimer. Further, weak C—H···O hydrogen bonds (Table 1) and ππ interactions between the benzene rings of the quinazoline bicycles [centroid-centroid distance = 3.538 (3) Å] consolidate the crystal packing.

Related literature top

For the biological activity of quinazoline-2,4(1H,3H)-diones, see: Tran et al. (2004); Cao et al. (2010) and for the biological activity of non-nucleoside reverse transcriptase inhibitors (NNRTIs), see: Hopkins et al. (1996, 1999); El-Brollosy (2006, 2007); El-Brollosy et al. (2008, 2009). For related structures, see: Liu (2008); Karimova et al. (2010).

Experimental top

Quinazoline-2,4(1H,3H)-dione (162 mg, 1 mmol) was stirred in dry acetonitrile (15 ml) under nitrogen and N,O-bis(trimethylsilyl)acetamide (BSA) (0.87 ml, 3.5 mmol) was added. After a clear solution was obtained (10 min), the mixture was cooled down to -50 °C and TMS trifluoromethanesulfonate (0.18 ml, 1 mmol) was added followed by the dropwise addition of bis(indan-2-yloxy)methane (560 g, 2 mmol). The reaction mixture was stirred at room temperature for 5 h, and quenched by addition of saturated aqueous sodium hydrogen carbonate solution (5 ml). The mixture was evaporated under reduced pressure and the residue was extracted with ether (3 × 50 ml). The combined ether fractions were dried (MgSO4) and evaporated under reduced pressure. The product was purified on silica gel column chromatography, using 20% ether in petroleum ether (40–60°C), to afford the title compound as a white solid in 71% yield (218 mg). Single crystals were achieved by crystallization from ethanol. M.p. 193–194 oC (El-Brollosy, 2007).

Refinement top

All H atoms were positioned geometrically [N—H=0.86 Å; C—H=0.93 Å - 0.98 Å] and treated as riding, with Uiso(H)=1.2Ueq(C, N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-{[(2,3-Dihydro-1H-inden-2-yl)oxy]methyl}quinazoline- 2,4(1H,3H)-dione top
Crystal data top
C18H16N2O3Z = 2
Mr = 308.33F(000) = 324
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6684 (8) ÅCell parameters from 11963 reflections
b = 10.0717 (10) Åθ = 2.9–27.9°
c = 10.6748 (11) ŵ = 0.09 mm1
α = 87.199 (8)°T = 296 K
β = 78.332 (8)°Plate, colorless
γ = 70.569 (8)°0.58 × 0.38 × 0.05 mm
V = 761.28 (13) Å3
Data collection top
Stoe IPDS 2
diffractometer
3156 independent reflections
Radiation source: fine-focus sealed tube2078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
rotation method scansθmax = 26.5°, θmin = 2.9°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 99
Tmin = 0.948, Tmax = 0.995k = 1212
11601 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0506P)2]
where P = (Fo2 + 2Fc2)/3
3156 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H16N2O3γ = 70.569 (8)°
Mr = 308.33V = 761.28 (13) Å3
Triclinic, P1Z = 2
a = 7.6684 (8) ÅMo Kα radiation
b = 10.0717 (10) ŵ = 0.09 mm1
c = 10.6748 (11) ÅT = 296 K
α = 87.199 (8)°0.58 × 0.38 × 0.05 mm
β = 78.332 (8)°
Data collection top
Stoe IPDS 2
diffractometer
3156 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2078 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.995Rint = 0.043
11601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
3156 reflectionsΔρmin = 0.16 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3360 (3)0.7691 (2)0.1809 (2)0.0586 (5)
H10.22620.76820.14770.070*
C20.2880 (3)0.8977 (2)0.2672 (3)0.0688 (6)
H2A0.17970.97290.24800.083*
H2B0.26130.87410.35660.083*
C30.4616 (3)0.94003 (18)0.23750 (19)0.0500 (5)
C40.5098 (3)1.0335 (2)0.3022 (2)0.0609 (5)
H40.42991.07980.37600.073*
C50.6771 (3)1.0575 (2)0.2565 (3)0.0705 (6)
H50.70981.12140.29900.085*
C60.7955 (3)0.9884 (3)0.1493 (3)0.0755 (7)
H60.90871.00550.11980.091*
C70.7506 (3)0.8938 (2)0.0837 (2)0.0715 (6)
H70.83290.84620.01120.086*
C80.5807 (3)0.87095 (18)0.12792 (19)0.0529 (5)
C90.4947 (3)0.7796 (2)0.07299 (19)0.0657 (6)
H9A0.58670.68740.04890.079*
H9B0.44560.82220.00170.079*
C100.4294 (2)0.51886 (17)0.19832 (17)0.0416 (4)
H10A0.53680.44750.22330.050*
H10B0.45880.52830.10630.050*
C110.1516 (2)0.48967 (16)0.14342 (15)0.0366 (4)
C120.0368 (2)0.36456 (17)0.28236 (17)0.0422 (4)
C130.0822 (2)0.35258 (16)0.37605 (15)0.0379 (4)
C140.0470 (3)0.28777 (19)0.49221 (17)0.0495 (4)
H140.05240.25190.50980.059*
C150.1577 (3)0.27652 (19)0.58079 (18)0.0548 (5)
H150.13500.23210.65790.066*
C160.3030 (3)0.33168 (19)0.55437 (17)0.0515 (5)
H160.37750.32470.61480.062*
C170.3401 (2)0.39664 (18)0.44111 (16)0.0446 (4)
H170.43860.43350.42530.053*
C180.2296 (2)0.40725 (16)0.34981 (15)0.0350 (4)
N10.26417 (18)0.47265 (13)0.23194 (12)0.0356 (3)
N20.00901 (19)0.43362 (14)0.17284 (13)0.0422 (3)
H20.05980.44250.11650.051*
O10.40148 (17)0.64742 (12)0.25756 (11)0.0487 (3)
O20.17725 (17)0.54975 (13)0.04228 (11)0.0490 (3)
O30.16859 (19)0.32033 (15)0.29619 (14)0.0658 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0577 (12)0.0473 (10)0.0821 (15)0.0195 (9)0.0355 (11)0.0023 (10)
C20.0494 (11)0.0560 (12)0.1013 (18)0.0166 (10)0.0134 (11)0.0133 (11)
C30.0489 (10)0.0378 (9)0.0665 (13)0.0140 (8)0.0192 (9)0.0032 (9)
C40.0620 (12)0.0467 (11)0.0785 (15)0.0201 (9)0.0190 (11)0.0048 (10)
C50.0794 (16)0.0567 (12)0.0951 (18)0.0362 (12)0.0405 (14)0.0135 (12)
C60.0627 (14)0.0710 (15)0.102 (2)0.0354 (12)0.0199 (14)0.0302 (14)
C70.0780 (15)0.0614 (13)0.0697 (15)0.0267 (12)0.0002 (12)0.0189 (11)
C80.0673 (13)0.0396 (9)0.0538 (11)0.0183 (9)0.0182 (10)0.0129 (8)
C90.1052 (17)0.0496 (11)0.0515 (12)0.0336 (11)0.0238 (12)0.0084 (9)
C100.0373 (9)0.0488 (10)0.0457 (10)0.0207 (8)0.0123 (7)0.0004 (8)
C110.0381 (9)0.0392 (8)0.0378 (9)0.0160 (7)0.0143 (7)0.0012 (7)
C120.0386 (9)0.0445 (9)0.0524 (11)0.0217 (8)0.0161 (8)0.0050 (8)
C130.0387 (9)0.0364 (8)0.0409 (9)0.0130 (7)0.0121 (7)0.0020 (7)
C140.0491 (11)0.0502 (10)0.0512 (11)0.0204 (9)0.0100 (9)0.0125 (8)
C150.0673 (13)0.0505 (11)0.0427 (11)0.0132 (10)0.0155 (9)0.0126 (8)
C160.0619 (12)0.0492 (10)0.0451 (10)0.0112 (9)0.0272 (9)0.0035 (8)
C170.0461 (10)0.0461 (10)0.0478 (10)0.0165 (8)0.0218 (8)0.0029 (8)
C180.0375 (9)0.0334 (8)0.0364 (9)0.0109 (7)0.0139 (7)0.0002 (6)
N10.0368 (7)0.0413 (7)0.0367 (7)0.0192 (6)0.0152 (6)0.0041 (6)
N20.0429 (8)0.0546 (8)0.0423 (8)0.0257 (7)0.0232 (6)0.0079 (7)
O10.0582 (8)0.0530 (7)0.0509 (7)0.0340 (6)0.0203 (6)0.0023 (6)
O20.0567 (8)0.0639 (8)0.0401 (7)0.0323 (6)0.0222 (6)0.0146 (6)
O30.0605 (8)0.0829 (10)0.0790 (10)0.0490 (8)0.0326 (7)0.0265 (8)
Geometric parameters (Å, º) top
C1—O11.443 (2)C10—N11.4641 (19)
C1—C91.525 (3)C10—H10A0.9700
C1—C21.525 (3)C10—H10B0.9700
C1—H10.9800C11—O21.2247 (19)
C2—C31.499 (3)C11—N21.3663 (19)
C2—H2A0.9700C11—N11.3725 (19)
C2—H2B0.9700C12—O31.2144 (18)
C3—C41.378 (3)C12—N21.375 (2)
C3—C81.382 (3)C12—C131.460 (2)
C4—C51.372 (3)C13—C181.389 (2)
C4—H40.9300C13—C141.393 (2)
C5—C61.362 (3)C14—C151.370 (3)
C5—H50.9300C14—H140.9300
C6—C71.377 (3)C15—C161.378 (3)
C6—H60.9300C15—H150.9300
C7—C81.383 (3)C16—C171.371 (2)
C7—H70.9300C16—H160.9300
C8—C91.495 (3)C17—C181.394 (2)
C9—H9A0.9700C17—H170.9300
C9—H9B0.9700C18—N11.410 (2)
C10—O11.4011 (19)N2—H20.8600
O1—C1—C9110.81 (16)O1—C10—H10A109.1
O1—C1—C2106.40 (17)N1—C10—H10A109.1
C9—C1—C2105.33 (16)O1—C10—H10B109.1
O1—C1—H1111.3N1—C10—H10B109.1
C9—C1—H1111.3H10A—C10—H10B107.8
C2—C1—H1111.3O2—C11—N2121.04 (15)
C3—C2—C1104.25 (17)O2—C11—N1122.58 (14)
C3—C2—H2A110.9N2—C11—N1116.37 (14)
C1—C2—H2A110.9O3—C12—N2120.33 (16)
C3—C2—H2B110.9O3—C12—C13124.94 (16)
C1—C2—H2B110.9N2—C12—C13114.72 (13)
H2A—C2—H2B108.9C18—C13—C14119.96 (16)
C4—C3—C8120.32 (18)C18—C13—C12119.93 (15)
C4—C3—C2129.21 (19)C14—C13—C12120.11 (15)
C8—C3—C2110.47 (17)C15—C14—C13120.45 (17)
C5—C4—C3119.3 (2)C15—C14—H14119.8
C5—C4—H4120.4C13—C14—H14119.8
C3—C4—H4120.4C14—C15—C16119.26 (17)
C6—C5—C4120.5 (2)C14—C15—H15120.4
C6—C5—H5119.8C16—C15—H15120.4
C4—C5—H5119.8C17—C16—C15121.49 (18)
C5—C6—C7121.1 (2)C17—C16—H16119.3
C5—C6—H6119.4C15—C16—H16119.3
C7—C6—H6119.4C16—C17—C18119.68 (16)
C6—C7—C8118.7 (2)C16—C17—H17120.2
C6—C7—H7120.6C18—C17—H17120.2
C8—C7—H7120.6C13—C18—C17119.16 (15)
C3—C8—C7120.04 (19)C13—C18—N1119.53 (14)
C3—C8—C9110.30 (17)C17—C18—N1121.31 (14)
C7—C8—C9129.6 (2)C11—N1—C18122.06 (13)
C8—C9—C1104.28 (16)C11—N1—C10117.92 (13)
C8—C9—H9A110.9C18—N1—C10119.96 (13)
C1—C9—H9A110.9C11—N2—C12127.31 (14)
C8—C9—H9B110.9C11—N2—H2116.3
C1—C9—H9B110.9C12—N2—H2116.3
H9A—C9—H9B108.9C10—O1—C1114.24 (13)
O1—C10—N1112.53 (13)
O1—C1—C2—C396.00 (19)C14—C15—C16—C170.5 (3)
C9—C1—C2—C321.7 (2)C15—C16—C17—C180.2 (3)
C1—C2—C3—C4167.6 (2)C14—C13—C18—C170.2 (2)
C1—C2—C3—C812.9 (2)C12—C13—C18—C17179.10 (15)
C8—C3—C4—C50.2 (3)C14—C13—C18—N1180.00 (15)
C2—C3—C4—C5179.3 (2)C12—C13—C18—N10.7 (2)
C3—C4—C5—C60.9 (3)C16—C17—C18—C130.6 (2)
C4—C5—C6—C70.4 (3)C16—C17—C18—N1179.66 (15)
C5—C6—C7—C80.8 (3)O2—C11—N1—C18177.94 (15)
C4—C3—C8—C71.0 (3)N2—C11—N1—C183.1 (2)
C2—C3—C8—C7179.43 (19)O2—C11—N1—C104.9 (2)
C4—C3—C8—C9178.03 (17)N2—C11—N1—C10174.07 (14)
C2—C3—C8—C91.6 (2)C13—C18—N1—C112.8 (2)
C6—C7—C8—C31.4 (3)C17—C18—N1—C11176.99 (15)
C6—C7—C8—C9177.3 (2)C13—C18—N1—C10174.32 (14)
C3—C8—C9—C115.3 (2)C17—C18—N1—C105.9 (2)
C7—C8—C9—C1165.8 (2)O1—C10—N1—C11103.02 (16)
O1—C1—C9—C892.08 (18)O1—C10—N1—C1879.75 (18)
C2—C1—C9—C822.6 (2)O2—C11—N2—C12179.57 (16)
O3—C12—C13—C18179.98 (17)N1—C11—N2—C121.4 (2)
N2—C12—C13—C180.9 (2)O3—C12—N2—C11179.69 (17)
O3—C12—C13—C140.7 (3)C13—C12—N2—C110.5 (2)
N2—C12—C13—C14178.46 (16)N1—C10—O1—C193.88 (17)
C18—C13—C14—C150.5 (3)C9—C1—O1—C1073.73 (18)
C12—C13—C14—C15179.80 (17)C2—C1—O1—C10172.28 (14)
C13—C14—C15—C160.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.062.9106 (18)169
C9—H9A···O2ii0.972.563.527 (3)173
C16—H16···O1iii0.932.473.378 (2)166
C10—H10A···O3iv0.972.463.404 (2)165
C5—H5···O3v0.932.473.314 (2)151
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H16N2O3
Mr308.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6684 (8), 10.0717 (10), 10.6748 (11)
α, β, γ (°)87.199 (8), 78.332 (8), 70.569 (8)
V3)761.28 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.58 × 0.38 × 0.05
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.948, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
11601, 3156, 2078
Rint0.043
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.103, 1.00
No. of reflections3156
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.062.9106 (18)169.2
C9—H9A···O2ii0.972.563.527 (3)173.1
C16—H16···O1iii0.932.473.378 (2)165.5
C10—H10A···O3iv0.972.463.404 (2)165.1
C5—H5···O3v0.932.473.314 (2)150.7
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z.
 

Acknowledgements

The authors thank the Ondokuz Mayıs University Research Fund for financial support. The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated.

References

First citationCao, S.-L., Wang, Y., Zhu, L., Liao, J., Guo, Y.-W., Chen, L.-L., Liu, H.-Q. & Xu, X. (2010). Eur. J. Med. Chem. 45, 3850–3857.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl-Brollosy, N. R. (2006). J. Heterocycl. Chem. 43, 1435–1440.  CAS Google Scholar
First citationEl-Brollosy, N. R. (2007). J. Chem. Res. pp. 358–361.  Google Scholar
First citationEl-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663–670.  CAS Google Scholar
First citationEl-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9–19.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHopkins, A. L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D. I. & Stammers, D. K. (1999). J. Med. Chem. 42, 4500–4505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarimova, G., Ashurov, J., Mukhamedov, N., Parpiev, N. A. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o1547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, G. (2008). Acta Cryst. E64, o1677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTran, T. P., Ellsworth, E. L., Stier, M. A., Domagala, J. M., Showalter, H. D., Gracheck, S. J., Shapiro, M. A., Joannides, T. E. & Singh, R. (2004). Bioorg. Med. Chem. Lett. 14, 4405–4409.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1866-o1867
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds