metal-organic compounds
Diaquabis(2,2′-bi-1H-imidazole)manganese(II) benzene-1,4-dicarboxylate
aDepartment of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, People's Republic of China, and bDepartment of Chemistry, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
*Correspondence e-mail: zyfyln828@163.com
The 6H6N4)2(H2O)2](C8H4O4), contains one-half each of the centrosymmetric cation and anion. The MnII atom is coordinated by four N atoms [Mn—N = 2.2168 (14) and 2.2407 (14) Å] from two 2,2′-biimidazole ligands and two water molecules [Mn—O = 2.2521 (14) Å] in a distorted octahedral geometry. Intermolecular N—H⋯O and O—H⋯O hydrogen bonds consolidate the crystal packing, which also exhibits π–π interactions between five-membered rings, with a centroid–centroid distance of 3.409 (2) Å.
of the title compound, [Mn(CRelated literature
For related structures, see: Fortin & Beauchamp (2001); Sang et al. (2002); Atencio et al. (2004); Wang et al. (2007). For background to supramolecular assemblies, see: Ramirez et al. (2002); Baca et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053681202199X/cv5293sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681202199X/cv5293Isup2.hkl
All reagents were of AR grade from commercial sources and used without further purification. Biimidazole was prepared following the known procedure (Ramirez et al., 2002). Mn(CH3COO)2 (0.3 mmol), H2biim (0.3 mmol) and terephthalic acid (0.3 mmol) in the molar ratio of 1:1:1 were added directly as a solid in 10 ml deionized water respectively, after the mixture was stirred at room temperature for 30 min, the pH value was adjusted to 7.0 by aqueous KOH solution. Then the mixture was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 160°C for 6 days under autogenous pressure. Afterwards, the vessel was cooled to room temperature at a rate of 10°C per hour. Light yellow sheet-like crystals of title complex were obtained and collected by filtration and washed with water (yield 40%).
The O-bound H atoms were located in difference Fourier maps and were refined with restraints O—H=0.84 (3) Å and Uiso(H) fixed to 0.08 Å2. The rest H atoms were geometrically positioned [C—H = 0.93 Å; N—H = 0.86 Å], and treated as riding, with Uiso(H) = 1.2Ueq of the parent atom.
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. View of the title complex with the atom-numbering scheme [symmetry codes: (A) -x, -y + 1, -z + 1; (B) -x + 2, -y + 1, -z + 2]. Displacement ellipsoids are drawn at the 30% probability level. |
[Mn(C6H6N4)2(H2O)2](C8H4O4) | F(000) = 538 |
Mr = 523.38 | Dx = 1.525 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2666 (10) Å | Cell parameters from 2178 reflections |
b = 10.9027 (13) Å | θ = 3.0–26.9° |
c = 12.6734 (16) Å | µ = 0.63 mm−1 |
β = 93.986 (2)° | T = 293 K |
V = 1139.5 (2) Å3 | Block, yellow |
Z = 2 | 0.46 × 0.19 × 0.07 mm |
Bruker SMART CCD area-detector diffractometer | 2024 independent reflections |
Radiation source: fine-focus sealed tube | 1712 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −6→9 |
Tmin = 0.761, Tmax = 0.960 | k = −13→12 |
5689 measured reflections | l = −14→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2933P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2024 reflections | Δρmax = 0.20 e Å−3 |
167 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0048 (12) |
[Mn(C6H6N4)2(H2O)2](C8H4O4) | V = 1139.5 (2) Å3 |
Mr = 523.38 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.2666 (10) Å | µ = 0.63 mm−1 |
b = 10.9027 (13) Å | T = 293 K |
c = 12.6734 (16) Å | 0.46 × 0.19 × 0.07 mm |
β = 93.986 (2)° |
Bruker SMART CCD area-detector diffractometer | 2024 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1712 reflections with I > 2σ(I) |
Tmin = 0.761, Tmax = 0.960 | Rint = 0.022 |
5689 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.20 e Å−3 |
2024 reflections | Δρmin = −0.17 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.0000 | 0.5000 | 0.5000 | 0.02879 (15) | |
N1 | 0.24692 (16) | 0.58566 (12) | 0.51483 (10) | 0.0273 (3) | |
N2 | 0.48208 (17) | 0.58683 (13) | 0.60838 (11) | 0.0289 (3) | |
H2A | 0.5580 | 0.5673 | 0.6552 | 0.035* | |
N3 | 0.12437 (17) | 0.39115 (14) | 0.62924 (11) | 0.0316 (4) | |
N4 | 0.34624 (18) | 0.37195 (14) | 0.73441 (11) | 0.0354 (4) | |
H4 | 0.4422 | 0.3851 | 0.7628 | 0.042* | |
O1 | 0.62726 (17) | 0.39434 (14) | 0.85633 (11) | 0.0517 (4) | |
O2 | 0.72528 (16) | 0.54524 (15) | 0.76328 (11) | 0.0501 (4) | |
O3 | 0.08176 (19) | 0.36279 (14) | 0.38200 (11) | 0.0431 (4) | |
C1 | 0.3431 (2) | 0.67589 (16) | 0.47712 (14) | 0.0322 (4) | |
H1 | 0.3136 | 0.7280 | 0.4210 | 0.039* | |
C2 | 0.4879 (2) | 0.67729 (16) | 0.53438 (14) | 0.0335 (4) | |
H2 | 0.5744 | 0.7298 | 0.5250 | 0.040* | |
C3 | 0.3359 (2) | 0.53425 (15) | 0.59437 (13) | 0.0248 (4) | |
C4 | 0.2721 (2) | 0.43418 (15) | 0.65354 (12) | 0.0272 (4) | |
C5 | 0.2410 (2) | 0.28425 (19) | 0.76286 (16) | 0.0432 (5) | |
H5 | 0.2592 | 0.2268 | 0.8166 | 0.052* | |
C6 | 0.1051 (2) | 0.29636 (18) | 0.69827 (15) | 0.0403 (5) | |
H6 | 0.0128 | 0.2479 | 0.7003 | 0.048* | |
C7 | 0.7311 (2) | 0.47488 (17) | 0.84132 (14) | 0.0342 (4) | |
C8 | 0.8711 (2) | 0.48881 (15) | 0.92349 (14) | 0.0297 (4) | |
C9 | 0.8507 (2) | 0.45947 (17) | 1.02814 (14) | 0.0337 (4) | |
H9 | 0.7504 | 0.4323 | 1.0476 | 0.040* | |
C10 | 0.9791 (2) | 0.47042 (17) | 1.10393 (14) | 0.0345 (4) | |
H10 | 0.9643 | 0.4502 | 1.1739 | 0.041* | |
H3A | 0.135 (3) | 0.390 (3) | 0.330 (2) | 0.080* | |
H3B | 0.104 (3) | 0.292 (3) | 0.391 (2) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0234 (2) | 0.0332 (2) | 0.0286 (2) | −0.00110 (16) | −0.00624 (14) | 0.00314 (16) |
N1 | 0.0261 (8) | 0.0281 (8) | 0.0272 (7) | 0.0002 (6) | −0.0017 (6) | 0.0020 (6) |
N2 | 0.0229 (8) | 0.0310 (8) | 0.0321 (8) | −0.0009 (6) | −0.0041 (6) | −0.0006 (6) |
N3 | 0.0259 (8) | 0.0362 (9) | 0.0316 (8) | −0.0039 (7) | −0.0047 (6) | 0.0066 (6) |
N4 | 0.0290 (8) | 0.0414 (9) | 0.0342 (8) | −0.0042 (7) | −0.0085 (6) | 0.0097 (7) |
O1 | 0.0465 (9) | 0.0514 (9) | 0.0536 (9) | −0.0173 (7) | −0.0224 (7) | 0.0128 (7) |
O2 | 0.0357 (8) | 0.0730 (10) | 0.0397 (8) | −0.0108 (7) | −0.0124 (6) | 0.0198 (7) |
O3 | 0.0497 (9) | 0.0394 (8) | 0.0410 (8) | −0.0008 (7) | 0.0093 (6) | −0.0038 (7) |
C1 | 0.0342 (10) | 0.0297 (10) | 0.0327 (9) | 0.0005 (8) | 0.0015 (8) | 0.0055 (8) |
C2 | 0.0306 (10) | 0.0300 (10) | 0.0404 (10) | −0.0061 (8) | 0.0045 (8) | 0.0008 (8) |
C3 | 0.0229 (9) | 0.0249 (9) | 0.0261 (8) | 0.0011 (7) | −0.0007 (7) | −0.0022 (7) |
C4 | 0.0260 (9) | 0.0291 (9) | 0.0261 (9) | 0.0005 (7) | −0.0026 (7) | 0.0014 (7) |
C5 | 0.0409 (11) | 0.0451 (12) | 0.0426 (11) | −0.0073 (9) | −0.0056 (9) | 0.0216 (9) |
C6 | 0.0327 (10) | 0.0434 (12) | 0.0439 (11) | −0.0111 (9) | −0.0035 (8) | 0.0144 (9) |
C7 | 0.0289 (10) | 0.0397 (11) | 0.0331 (10) | −0.0006 (8) | −0.0055 (8) | −0.0006 (8) |
C8 | 0.0299 (10) | 0.0273 (9) | 0.0308 (9) | 0.0027 (7) | −0.0066 (7) | −0.0007 (7) |
C9 | 0.0268 (10) | 0.0384 (10) | 0.0354 (10) | −0.0015 (8) | −0.0021 (7) | 0.0008 (8) |
C10 | 0.0354 (11) | 0.0398 (11) | 0.0274 (9) | −0.0008 (8) | −0.0026 (8) | 0.0010 (8) |
Mn1—N3 | 2.2168 (14) | O2—C7 | 1.250 (2) |
Mn1—N3i | 2.2168 (14) | O3—H3A | 0.87 (3) |
Mn1—N1 | 2.2407 (14) | O3—H3B | 0.80 (3) |
Mn1—N1i | 2.2407 (14) | C1—C2 | 1.356 (2) |
Mn1—O3 | 2.2521 (14) | C1—H1 | 0.9300 |
Mn1—O3i | 2.2521 (14) | C2—H2 | 0.9300 |
N1—C3 | 1.330 (2) | C3—C4 | 1.444 (2) |
N1—C1 | 1.372 (2) | C5—C6 | 1.350 (3) |
N2—C3 | 1.338 (2) | C5—H5 | 0.9300 |
N2—C2 | 1.364 (2) | C6—H6 | 0.9300 |
N2—H2A | 0.8600 | C7—C8 | 1.510 (2) |
N3—C4 | 1.324 (2) | C8—C10ii | 1.383 (3) |
N3—C6 | 1.370 (2) | C8—C9 | 1.386 (3) |
N4—C4 | 1.341 (2) | C9—C10 | 1.386 (2) |
N4—C5 | 1.358 (2) | C9—H9 | 0.9300 |
N4—H4 | 0.8600 | C10—C8ii | 1.383 (3) |
O1—C7 | 1.252 (2) | C10—H10 | 0.9300 |
N3—Mn1—N3i | 180.0 | C2—C1—N1 | 109.46 (15) |
N3—Mn1—N1 | 77.77 (5) | C2—C1—H1 | 125.3 |
N3i—Mn1—N1 | 102.23 (5) | N1—C1—H1 | 125.3 |
N3—Mn1—N1i | 102.23 (5) | C1—C2—N2 | 106.73 (15) |
N3i—Mn1—N1i | 77.77 (5) | C1—C2—H2 | 126.6 |
N1—Mn1—N1i | 180.00 (6) | N2—C2—H2 | 126.6 |
N3—Mn1—O3 | 89.42 (6) | N1—C3—N2 | 111.53 (15) |
N3i—Mn1—O3 | 90.58 (6) | N1—C3—C4 | 120.62 (15) |
N1—Mn1—O3 | 91.08 (5) | N2—C3—C4 | 127.86 (15) |
N1i—Mn1—O3 | 88.92 (5) | N3—C4—N4 | 111.31 (15) |
N3—Mn1—O3i | 90.58 (6) | N3—C4—C3 | 120.73 (15) |
N3i—Mn1—O3i | 89.42 (6) | N4—C4—C3 | 127.95 (15) |
N1—Mn1—O3i | 88.92 (5) | C6—C5—N4 | 106.95 (16) |
N1i—Mn1—O3i | 91.08 (5) | C6—C5—H5 | 126.5 |
O3—Mn1—O3i | 180.00 (5) | N4—C5—H5 | 126.5 |
C3—N1—C1 | 105.24 (14) | C5—C6—N3 | 109.40 (16) |
C3—N1—Mn1 | 109.91 (11) | C5—C6—H6 | 125.3 |
C1—N1—Mn1 | 144.74 (11) | N3—C6—H6 | 125.3 |
C3—N2—C2 | 107.05 (14) | O2—C7—O1 | 124.18 (17) |
C3—N2—H2A | 126.5 | O2—C7—C8 | 118.01 (17) |
C2—N2—H2A | 126.5 | O1—C7—C8 | 117.81 (16) |
C4—N3—C6 | 105.36 (14) | C10ii—C8—C9 | 119.03 (16) |
C4—N3—Mn1 | 110.79 (11) | C10ii—C8—C7 | 121.06 (16) |
C6—N3—Mn1 | 143.79 (12) | C9—C8—C7 | 119.91 (16) |
C4—N4—C5 | 106.97 (15) | C8—C9—C10 | 120.33 (17) |
C4—N4—H4 | 126.5 | C8—C9—H9 | 119.8 |
C5—N4—H4 | 126.5 | C10—C9—H9 | 119.8 |
Mn1—O3—H3A | 117.7 (18) | C8ii—C10—C9 | 120.64 (17) |
Mn1—O3—H3B | 129 (2) | C8ii—C10—H10 | 119.7 |
H3A—O3—H3B | 108 (3) | C9—C10—H10 | 119.7 |
N3—Mn1—N1—C3 | −3.35 (11) | C1—N1—C3—C4 | 179.99 (15) |
N3i—Mn1—N1—C3 | 176.65 (11) | Mn1—N1—C3—C4 | 2.77 (19) |
N1i—Mn1—N1—C3 | 118.74 (12) | C2—N2—C3—N1 | 0.25 (19) |
O3—Mn1—N1—C3 | −92.52 (11) | C2—N2—C3—C4 | −179.90 (17) |
O3i—Mn1—N1—C3 | 87.48 (11) | C6—N3—C4—N4 | −0.3 (2) |
N3—Mn1—N1—C1 | −178.7 (2) | Mn1—N3—C4—N4 | 177.63 (11) |
N3i—Mn1—N1—C1 | 1.3 (2) | C6—N3—C4—C3 | 178.54 (16) |
N1i—Mn1—N1—C1 | −56.59 (18) | Mn1—N3—C4—C3 | −3.5 (2) |
O3—Mn1—N1—C1 | 92.1 (2) | C5—N4—C4—N3 | 0.4 (2) |
O3i—Mn1—N1—C1 | −87.9 (2) | C5—N4—C4—C3 | −178.38 (18) |
N3i—Mn1—N3—C4 | −180 (81) | N1—C3—C4—N3 | 0.5 (3) |
N1—Mn1—N3—C4 | 3.61 (11) | N2—C3—C4—N3 | −179.33 (16) |
N1i—Mn1—N3—C4 | −176.39 (11) | N1—C3—C4—N4 | 179.15 (16) |
O3—Mn1—N3—C4 | 94.84 (12) | N2—C3—C4—N4 | −0.7 (3) |
O3i—Mn1—N3—C4 | −85.16 (12) | C4—N4—C5—C6 | −0.3 (2) |
N3i—Mn1—N3—C6 | −3 (81) | N4—C5—C6—N3 | 0.1 (2) |
N1—Mn1—N3—C6 | −179.8 (2) | C4—N3—C6—C5 | 0.1 (2) |
N1i—Mn1—N3—C6 | 0.2 (2) | Mn1—N3—C6—C5 | −176.60 (16) |
O3—Mn1—N3—C6 | −88.5 (2) | O2—C7—C8—C10ii | −30.4 (3) |
O3i—Mn1—N3—C6 | 91.5 (2) | O1—C7—C8—C10ii | 150.38 (18) |
C3—N1—C1—C2 | 0.00 (19) | O2—C7—C8—C9 | 150.21 (18) |
Mn1—N1—C1—C2 | 175.45 (14) | O1—C7—C8—C9 | −29.0 (3) |
N1—C1—C2—N2 | 0.1 (2) | C10ii—C8—C9—C10 | −0.3 (3) |
C3—N2—C2—C1 | −0.24 (19) | C7—C8—C9—C10 | 179.15 (17) |
C1—N1—C3—N2 | −0.15 (18) | C8—C9—C10—C8ii | 0.3 (3) |
Mn1—N1—C3—N2 | −177.37 (11) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3B···O1iii | 0.80 (3) | 2.09 (3) | 2.850 (2) | 159 (3) |
O3—H3A···O2iv | 0.87 (3) | 1.85 (3) | 2.711 (2) | 170 (3) |
N4—H4···O1 | 0.86 | 1.87 | 2.7101 (19) | 165 |
N2—H2A···O2 | 0.86 | 1.89 | 2.7482 (19) | 173 |
Symmetry codes: (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C6H6N4)2(H2O)2](C8H4O4) |
Mr | 523.38 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 8.2666 (10), 10.9027 (13), 12.6734 (16) |
β (°) | 93.986 (2) |
V (Å3) | 1139.5 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.63 |
Crystal size (mm) | 0.46 × 0.19 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.761, 0.960 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5689, 2024, 1712 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.075, 1.04 |
No. of reflections | 2024 |
No. of parameters | 167 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.17 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3B···O1i | 0.80 (3) | 2.09 (3) | 2.850 (2) | 159 (3) |
O3—H3A···O2ii | 0.87 (3) | 1.85 (3) | 2.711 (2) | 170 (3) |
N4—H4···O1 | 0.86 | 1.87 | 2.7101 (19) | 164.5 |
N2—H2A···O2 | 0.86 | 1.89 | 2.7482 (19) | 172.8 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1. |
References
Atencio, R., Chacon, M., Gonzalez, T., Briceno, A., Agrifoglio, G. & Sierraalta, A. (2004). Dalton Trans. pp. 505–513. Web of Science CSD CrossRef Google Scholar
Baca, S. G., Filippova, I. G., Gerbeleu, N. V., Simonov, Y. A., Gdaniec, M., Timco, G. A., Gherco, O. A. & Malaestean, Y. L. (2003). Inorg. Chim. Acta, 344, 109–116. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2004). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fortin, S. & Beauchamp, A. L. (2001). Inorg. Chem. 40, 105–112. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ramirez, K., Reyes, J. A., Briceno, A. & Atencio, R. (2002). CrystEngComm, 4, 208–212. Web of Science CSD CrossRef CAS Google Scholar
Sang, R., Zhu, M. & Yang, P. (2002). Acta Cryst. E58, m172–m175. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Q. W., Liang, W. & Wu, Q. (2007). Acta Cryst. E63, m2008. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Supramolecular assemblies have provided numerous materials with very attractive properties (Ramirez et al., 2002). One of the best strategies to construct such materials relies on the use of both the building block approach and the additional hydrogen bonding of the coordinated ligands to their linking capability (Baca et al., 2003). The 2,2'-biimidazole (H2biim) possesses these properties - coordination to metal centre and acting as a donor in hydrogen bonding interaction (Fortin & Beauchamp, 2001; Sang et al., 2002; Atencio et al., 2004; Wang et al., 2007).
The structure of the title complex consists of [Mn(H2biim)2(H2O)2]2+ cations and terephthalate dianions (Fig. 1). The coordination geometry of the manganese(II) centre can be described as a distorted octahedron including four nitrogen atoms from two chelating H2biim ligands and two oxygen atoms from aqua ligands. The crystal packing is stabilized by the hydrogen bonds N—H···O and O—H···O (Table 1).