metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(2,2′-bi-1H-imidazole)­man­ganese(II) benzene-1,4-di­carboxyl­ate

aDepartment of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, People's Republic of China, and bDepartment of Chemistry, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
*Correspondence e-mail: zyfyln828@163.com

(Received 27 April 2012; accepted 15 May 2012; online 26 May 2012)

The asymmetric unit of the title compound, [Mn(C6H6N4)2(H2O)2](C8H4O4), contains one-half each of the centrosymmetric cation and anion. The MnII atom is coordinated by four N atoms [Mn—N = 2.2168 (14) and 2.2407 (14) Å] from two 2,2′-biimidazole ligands and two water mol­ecules [Mn—O = 2.2521 (14) Å] in a distorted octa­hedral geometry. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds consol­idate the crystal packing, which also exhibits ππ inter­actions between five-membered rings, with a centroid–centroid distance of 3.409 (2) Å.

Related literature

For related structures, see: Fortin & Beauchamp (2001[Fortin, S. & Beauchamp, A. L. (2001). Inorg. Chem. 40, 105-112.]); Sang et al. (2002[Sang, R., Zhu, M. & Yang, P. (2002). Acta Cryst. E58, m172-m175.]); Atencio et al. (2004[Atencio, R., Chacon, M., Gonzalez, T., Briceno, A., Agrifoglio, G. & Sierraalta, A. (2004). Dalton Trans. pp. 505-513.]); Wang et al. (2007[Wang, Q. W., Liang, W. & Wu, Q. (2007). Acta Cryst. E63, m2008.]). For background to supra­molecular assemblies, see: Ramirez et al. (2002[Ramirez, K., Reyes, J. A., Briceno, A. & Atencio, R. (2002). CrystEngComm, 4, 208-212.]); Baca et al. (2003[Baca, S. G., Filippova, I. G., Gerbeleu, N. V., Simonov, Y. A., Gdaniec, M., Timco, G. A., Gherco, O. A. & Malaestean, Y. L. (2003). Inorg. Chim. Acta, 344, 109-116.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C6H6N4)2(H2O)2](C8H4O4)

  • Mr = 523.38

  • Monoclinic, P 21 /n

  • a = 8.2666 (10) Å

  • b = 10.9027 (13) Å

  • c = 12.6734 (16) Å

  • β = 93.986 (2)°

  • V = 1139.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 K

  • 0.46 × 0.19 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.761, Tmax = 0.960

  • 5689 measured reflections

  • 2024 independent reflections

  • 1712 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.04

  • 2024 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O1i 0.80 (3) 2.09 (3) 2.850 (2) 159 (3)
O3—H3A⋯O2ii 0.87 (3) 1.85 (3) 2.711 (2) 170 (3)
N4—H4⋯O1 0.86 1.87 2.7101 (19) 165
N2—H2A⋯O2 0.86 1.89 2.7482 (19) 173
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Supramolecular assemblies have provided numerous materials with very attractive properties (Ramirez et al., 2002). One of the best strategies to construct such materials relies on the use of both the building block approach and the additional hydrogen bonding of the coordinated ligands to their linking capability (Baca et al., 2003). The 2,2'-biimidazole (H2biim) possesses these properties - coordination to metal centre and acting as a donor in hydrogen bonding interaction (Fortin & Beauchamp, 2001; Sang et al., 2002; Atencio et al., 2004; Wang et al., 2007).

The structure of the title complex consists of [Mn(H2biim)2(H2O)2]2+ cations and terephthalate dianions (Fig. 1). The coordination geometry of the manganese(II) centre can be described as a distorted octahedron including four nitrogen atoms from two chelating H2biim ligands and two oxygen atoms from aqua ligands. The crystal packing is stabilized by the hydrogen bonds N—H···O and O—H···O (Table 1).

Related literature top

For related structures, see: Fortin & Beauchamp (2001); Sang et al. (2002); Atencio et al. (2004); Wang et al. (2007). For background to supramolecular assemblies, see: Ramirez et al. (2002); Baca et al. (2003).

Experimental top

All reagents were of AR grade from commercial sources and used without further purification. Biimidazole was prepared following the known procedure (Ramirez et al., 2002). Mn(CH3COO)2 (0.3 mmol), H2biim (0.3 mmol) and terephthalic acid (0.3 mmol) in the molar ratio of 1:1:1 were added directly as a solid in 10 ml deionized water respectively, after the mixture was stirred at room temperature for 30 min, the pH value was adjusted to 7.0 by aqueous KOH solution. Then the mixture was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 160°C for 6 days under autogenous pressure. Afterwards, the vessel was cooled to room temperature at a rate of 10°C per hour. Light yellow sheet-like crystals of title complex were obtained and collected by filtration and washed with water (yield 40%).

Refinement top

The O-bound H atoms were located in difference Fourier maps and were refined with restraints O—H=0.84 (3) Å and Uiso(H) fixed to 0.08 Å2. The rest H atoms were geometrically positioned [C—H = 0.93 Å; N—H = 0.86 Å], and treated as riding, with Uiso(H) = 1.2Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex with the atom-numbering scheme [symmetry codes: (A) -x, -y + 1, -z + 1; (B) -x + 2, -y + 1, -z + 2]. Displacement ellipsoids are drawn at the 30% probability level.
Diaquabis(2,2'-bi-1H-imidazole)manganese(II) benzene-1,4-dicarboxylate top
Crystal data top
[Mn(C6H6N4)2(H2O)2](C8H4O4)F(000) = 538
Mr = 523.38Dx = 1.525 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2666 (10) ÅCell parameters from 2178 reflections
b = 10.9027 (13) Åθ = 3.0–26.9°
c = 12.6734 (16) ŵ = 0.63 mm1
β = 93.986 (2)°T = 293 K
V = 1139.5 (2) Å3Block, yellow
Z = 20.46 × 0.19 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2024 independent reflections
Radiation source: fine-focus sealed tube1712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 69
Tmin = 0.761, Tmax = 0.960k = 1312
5689 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2933P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2024 reflectionsΔρmax = 0.20 e Å3
167 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (12)
Crystal data top
[Mn(C6H6N4)2(H2O)2](C8H4O4)V = 1139.5 (2) Å3
Mr = 523.38Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.2666 (10) ŵ = 0.63 mm1
b = 10.9027 (13) ÅT = 293 K
c = 12.6734 (16) Å0.46 × 0.19 × 0.07 mm
β = 93.986 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2024 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1712 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.960Rint = 0.022
5689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
2024 reflectionsΔρmin = 0.17 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.50000.50000.02879 (15)
N10.24692 (16)0.58566 (12)0.51483 (10)0.0273 (3)
N20.48208 (17)0.58683 (13)0.60838 (11)0.0289 (3)
H2A0.55800.56730.65520.035*
N30.12437 (17)0.39115 (14)0.62924 (11)0.0316 (4)
N40.34624 (18)0.37195 (14)0.73441 (11)0.0354 (4)
H40.44220.38510.76280.042*
O10.62726 (17)0.39434 (14)0.85633 (11)0.0517 (4)
O20.72528 (16)0.54524 (15)0.76328 (11)0.0501 (4)
O30.08176 (19)0.36279 (14)0.38200 (11)0.0431 (4)
C10.3431 (2)0.67589 (16)0.47712 (14)0.0322 (4)
H10.31360.72800.42100.039*
C20.4879 (2)0.67729 (16)0.53438 (14)0.0335 (4)
H20.57440.72980.52500.040*
C30.3359 (2)0.53425 (15)0.59437 (13)0.0248 (4)
C40.2721 (2)0.43418 (15)0.65354 (12)0.0272 (4)
C50.2410 (2)0.28425 (19)0.76286 (16)0.0432 (5)
H50.25920.22680.81660.052*
C60.1051 (2)0.29636 (18)0.69827 (15)0.0403 (5)
H60.01280.24790.70030.048*
C70.7311 (2)0.47488 (17)0.84132 (14)0.0342 (4)
C80.8711 (2)0.48881 (15)0.92349 (14)0.0297 (4)
C90.8507 (2)0.45947 (17)1.02814 (14)0.0337 (4)
H90.75040.43231.04760.040*
C100.9791 (2)0.47042 (17)1.10393 (14)0.0345 (4)
H100.96430.45021.17390.041*
H3A0.135 (3)0.390 (3)0.330 (2)0.080*
H3B0.104 (3)0.292 (3)0.391 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0234 (2)0.0332 (2)0.0286 (2)0.00110 (16)0.00624 (14)0.00314 (16)
N10.0261 (8)0.0281 (8)0.0272 (7)0.0002 (6)0.0017 (6)0.0020 (6)
N20.0229 (8)0.0310 (8)0.0321 (8)0.0009 (6)0.0041 (6)0.0006 (6)
N30.0259 (8)0.0362 (9)0.0316 (8)0.0039 (7)0.0047 (6)0.0066 (6)
N40.0290 (8)0.0414 (9)0.0342 (8)0.0042 (7)0.0085 (6)0.0097 (7)
O10.0465 (9)0.0514 (9)0.0536 (9)0.0173 (7)0.0224 (7)0.0128 (7)
O20.0357 (8)0.0730 (10)0.0397 (8)0.0108 (7)0.0124 (6)0.0198 (7)
O30.0497 (9)0.0394 (8)0.0410 (8)0.0008 (7)0.0093 (6)0.0038 (7)
C10.0342 (10)0.0297 (10)0.0327 (9)0.0005 (8)0.0015 (8)0.0055 (8)
C20.0306 (10)0.0300 (10)0.0404 (10)0.0061 (8)0.0045 (8)0.0008 (8)
C30.0229 (9)0.0249 (9)0.0261 (8)0.0011 (7)0.0007 (7)0.0022 (7)
C40.0260 (9)0.0291 (9)0.0261 (9)0.0005 (7)0.0026 (7)0.0014 (7)
C50.0409 (11)0.0451 (12)0.0426 (11)0.0073 (9)0.0056 (9)0.0216 (9)
C60.0327 (10)0.0434 (12)0.0439 (11)0.0111 (9)0.0035 (8)0.0144 (9)
C70.0289 (10)0.0397 (11)0.0331 (10)0.0006 (8)0.0055 (8)0.0006 (8)
C80.0299 (10)0.0273 (9)0.0308 (9)0.0027 (7)0.0066 (7)0.0007 (7)
C90.0268 (10)0.0384 (10)0.0354 (10)0.0015 (8)0.0021 (7)0.0008 (8)
C100.0354 (11)0.0398 (11)0.0274 (9)0.0008 (8)0.0026 (8)0.0010 (8)
Geometric parameters (Å, º) top
Mn1—N32.2168 (14)O2—C71.250 (2)
Mn1—N3i2.2168 (14)O3—H3A0.87 (3)
Mn1—N12.2407 (14)O3—H3B0.80 (3)
Mn1—N1i2.2407 (14)C1—C21.356 (2)
Mn1—O32.2521 (14)C1—H10.9300
Mn1—O3i2.2521 (14)C2—H20.9300
N1—C31.330 (2)C3—C41.444 (2)
N1—C11.372 (2)C5—C61.350 (3)
N2—C31.338 (2)C5—H50.9300
N2—C21.364 (2)C6—H60.9300
N2—H2A0.8600C7—C81.510 (2)
N3—C41.324 (2)C8—C10ii1.383 (3)
N3—C61.370 (2)C8—C91.386 (3)
N4—C41.341 (2)C9—C101.386 (2)
N4—C51.358 (2)C9—H90.9300
N4—H40.8600C10—C8ii1.383 (3)
O1—C71.252 (2)C10—H100.9300
N3—Mn1—N3i180.0C2—C1—N1109.46 (15)
N3—Mn1—N177.77 (5)C2—C1—H1125.3
N3i—Mn1—N1102.23 (5)N1—C1—H1125.3
N3—Mn1—N1i102.23 (5)C1—C2—N2106.73 (15)
N3i—Mn1—N1i77.77 (5)C1—C2—H2126.6
N1—Mn1—N1i180.00 (6)N2—C2—H2126.6
N3—Mn1—O389.42 (6)N1—C3—N2111.53 (15)
N3i—Mn1—O390.58 (6)N1—C3—C4120.62 (15)
N1—Mn1—O391.08 (5)N2—C3—C4127.86 (15)
N1i—Mn1—O388.92 (5)N3—C4—N4111.31 (15)
N3—Mn1—O3i90.58 (6)N3—C4—C3120.73 (15)
N3i—Mn1—O3i89.42 (6)N4—C4—C3127.95 (15)
N1—Mn1—O3i88.92 (5)C6—C5—N4106.95 (16)
N1i—Mn1—O3i91.08 (5)C6—C5—H5126.5
O3—Mn1—O3i180.00 (5)N4—C5—H5126.5
C3—N1—C1105.24 (14)C5—C6—N3109.40 (16)
C3—N1—Mn1109.91 (11)C5—C6—H6125.3
C1—N1—Mn1144.74 (11)N3—C6—H6125.3
C3—N2—C2107.05 (14)O2—C7—O1124.18 (17)
C3—N2—H2A126.5O2—C7—C8118.01 (17)
C2—N2—H2A126.5O1—C7—C8117.81 (16)
C4—N3—C6105.36 (14)C10ii—C8—C9119.03 (16)
C4—N3—Mn1110.79 (11)C10ii—C8—C7121.06 (16)
C6—N3—Mn1143.79 (12)C9—C8—C7119.91 (16)
C4—N4—C5106.97 (15)C8—C9—C10120.33 (17)
C4—N4—H4126.5C8—C9—H9119.8
C5—N4—H4126.5C10—C9—H9119.8
Mn1—O3—H3A117.7 (18)C8ii—C10—C9120.64 (17)
Mn1—O3—H3B129 (2)C8ii—C10—H10119.7
H3A—O3—H3B108 (3)C9—C10—H10119.7
N3—Mn1—N1—C33.35 (11)C1—N1—C3—C4179.99 (15)
N3i—Mn1—N1—C3176.65 (11)Mn1—N1—C3—C42.77 (19)
N1i—Mn1—N1—C3118.74 (12)C2—N2—C3—N10.25 (19)
O3—Mn1—N1—C392.52 (11)C2—N2—C3—C4179.90 (17)
O3i—Mn1—N1—C387.48 (11)C6—N3—C4—N40.3 (2)
N3—Mn1—N1—C1178.7 (2)Mn1—N3—C4—N4177.63 (11)
N3i—Mn1—N1—C11.3 (2)C6—N3—C4—C3178.54 (16)
N1i—Mn1—N1—C156.59 (18)Mn1—N3—C4—C33.5 (2)
O3—Mn1—N1—C192.1 (2)C5—N4—C4—N30.4 (2)
O3i—Mn1—N1—C187.9 (2)C5—N4—C4—C3178.38 (18)
N3i—Mn1—N3—C4180 (81)N1—C3—C4—N30.5 (3)
N1—Mn1—N3—C43.61 (11)N2—C3—C4—N3179.33 (16)
N1i—Mn1—N3—C4176.39 (11)N1—C3—C4—N4179.15 (16)
O3—Mn1—N3—C494.84 (12)N2—C3—C4—N40.7 (3)
O3i—Mn1—N3—C485.16 (12)C4—N4—C5—C60.3 (2)
N3i—Mn1—N3—C63 (81)N4—C5—C6—N30.1 (2)
N1—Mn1—N3—C6179.8 (2)C4—N3—C6—C50.1 (2)
N1i—Mn1—N3—C60.2 (2)Mn1—N3—C6—C5176.60 (16)
O3—Mn1—N3—C688.5 (2)O2—C7—C8—C10ii30.4 (3)
O3i—Mn1—N3—C691.5 (2)O1—C7—C8—C10ii150.38 (18)
C3—N1—C1—C20.00 (19)O2—C7—C8—C9150.21 (18)
Mn1—N1—C1—C2175.45 (14)O1—C7—C8—C929.0 (3)
N1—C1—C2—N20.1 (2)C10ii—C8—C9—C100.3 (3)
C3—N2—C2—C10.24 (19)C7—C8—C9—C10179.15 (17)
C1—N1—C3—N20.15 (18)C8—C9—C10—C8ii0.3 (3)
Mn1—N1—C3—N2177.37 (11)
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1iii0.80 (3)2.09 (3)2.850 (2)159 (3)
O3—H3A···O2iv0.87 (3)1.85 (3)2.711 (2)170 (3)
N4—H4···O10.861.872.7101 (19)165
N2—H2A···O20.861.892.7482 (19)173
Symmetry codes: (iii) x1/2, y+1/2, z1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C6H6N4)2(H2O)2](C8H4O4)
Mr523.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.2666 (10), 10.9027 (13), 12.6734 (16)
β (°) 93.986 (2)
V3)1139.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.46 × 0.19 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.761, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
5689, 2024, 1712
Rint0.022
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.04
No. of reflections2024
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1i0.80 (3)2.09 (3)2.850 (2)159 (3)
O3—H3A···O2ii0.87 (3)1.85 (3)2.711 (2)170 (3)
N4—H4···O10.861.872.7101 (19)164.5
N2—H2A···O20.861.892.7482 (19)172.8
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1.
 

References

First citationAtencio, R., Chacon, M., Gonzalez, T., Briceno, A., Agrifoglio, G. & Sierraalta, A. (2004). Dalton Trans. pp. 505–513.  Web of Science CSD CrossRef Google Scholar
First citationBaca, S. G., Filippova, I. G., Gerbeleu, N. V., Simonov, Y. A., Gdaniec, M., Timco, G. A., Gherco, O. A. & Malaestean, Y. L. (2003). Inorg. Chim. Acta, 344, 109–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFortin, S. & Beauchamp, A. L. (2001). Inorg. Chem. 40, 105–112.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRamirez, K., Reyes, J. A., Briceno, A. & Atencio, R. (2002). CrystEngComm, 4, 208–212.  Web of Science CSD CrossRef CAS Google Scholar
First citationSang, R., Zhu, M. & Yang, P. (2002). Acta Cryst. E58, m172–m175.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q. W., Liang, W. & Wu, Q. (2007). Acta Cryst. E63, m2008.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds