organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1753-o1754

Quetiapine N-oxide–fumaric acid (2/1)

aCollege of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China, and bChemistry Department, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
*Correspondence e-mail: huxiurong@yahoo.com.cn

(Received 28 April 2012; accepted 8 May 2012; online 16 May 2012)

The title compound (systematic name: 2-{2-[4-(dibenzo[b,f][1,4]thia­zepin-11-yl)piperazin-1-yl 1-oxide]eth­oxy}ethanol–fumaric acid (2/1)), C21H25N3O3S·0.5C4H4O4, is one of the oxidation products of quetiapine hemifumaric acid. In the tricyclic fragment, the central thia­zepine ring displays a boat conformation and the benzene rings are inclined to each other at a dihedral angle of 72.0 (2)°. The piperazine ring adopts a chair conformation with its eth­oxy­ethanol side chain oriented equatorially. In addition to the main mol­ecule, the asymmetric unit contains one-half mol­ecule of fumaric acid, the complete mol­ecule being generated by inversion symmetry. In the crystal, O—H⋯O hydrogen bonds link the components into corrugated layers parallel to bc plane.

Related literature

For the identification, isolation, synthesis and characterization of quetiapine N-oxide, see: Mittapelli et al. (2010[Mittapelli, V., Vadali, L., Sivalakshmi, D. A. & Suryanarayana, M. V. (2010). Rasayan J. Chem. 3, 677-680.]). For quanti­tative determination of quetiapine impurities, degradation products in pharmaceutical dosage form or in bulk, tablets, and in human plasma, see: Trivedi & Patel (2011[Trivedi, R. K. & Patel, M. C. (2011). Sci. Pharm. 79, 97-111.]); Belal et al. (2008[Belal, F., Elbrashy, A., Eid, M. & Nasr, J. J. (2008). J. Liq. Chromatogr. Relat. Technol. 31, 1283-1298.]). For the use of quetiapine as an anti­psychotic drug, see: Lieberman (1996[Lieberman, J. A. (1996). J. Clin. Psychiatry, 57, 68-71.]). For the crystal structure of quetiapine hemifumarate, see: Ravikumar & Sridhar (2005[Ravikumar, K. & Sridhar, B. (2005). Acta Cryst. E61, o3245-o3248.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25N3O3S·0.5C4H4O4

  • Mr = 457.54

  • Monoclinic, P 21 /c

  • a = 13.1299 (9) Å

  • b = 12.5047 (8) Å

  • c = 13.9950 (9) Å

  • β = 101.59 (2)°

  • V = 2250.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.27 × 0.25 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.982

  • 17003 measured reflections

  • 3970 independent reflections

  • 2453 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.193

  • S = 1.00

  • 3970 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H401⋯O1 0.81 1.62 2.394 (6) 157
O3—H301⋯O1i 0.82 1.90 2.691 (4) 161
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Quetiapine N-oxide hemifumarate is one of the oxidation or degradation products of quetiapine hemifumarate (Mittapelli et al., 2010; Trivedi et al., 2011 & Belal et al., 2008). Quetiapine is one of the atypical antipsychotic licensed for the treatment of schizophrenia (Lieberman, 1996) or manic episodes associated with bipolar disorder. In the present study, we report the crystal structure of quetiapine N-oxide hemifumarate, (I), recrystallized from ethanol.

In the crystal structure of (I) (Fig.1), the asymmetric unit consists of one quetiapine N-oxide molecule and one-half of fumarate molecule; the latter one is situated on inversion center. The oxidized N atom is established as N3. The N—C bonds at N3 are lengthened [mean value 1.504 (5) Å compared to 1.427 (5) Å for N2], as would be expected for an oxidized system. The values of bond length for N3—O1 is 1.388 (4) Å. Consequently, N3 shows quaternary character in a tetrahedral configuration, with bond angles ranging from 108.5 (3)° to 110.3 (3)°.

The conformation of the title compound is similar to that of quetiapine hemifumarate (Ravikumar et al., 2005). The conformation of the central thiazepine ring in the (6,7,6)-tricyclic ring system can be described as a boat, with the atoms common to the benzene rings (C2, C7, C8 and C13) as the basal plane, the S atom as the bow and the N1=C1 bridge as the stern. The bow angle is 50.0 (2)° and the stern angle is 41.7 (2)°. This enables the dibenzothiazepine ring skeleton to form a flattened V-shaped conformation. The dihedral angle between the two benzene rings is 72.0 (2)°. The piperazine ring adopts a chair conformation. The thiazepine nucleus can be viewed as being in an equatorial orientation to the piperazine ring. The ethoxyethanol side chain at the oxidized N-atom site of the piperazine ring occupies an equatorial orientation and is in a folded conformation.

In the crystal structure, intermolecular hydrogen bonds O—H···O (Table 1) link all moieties into corrugated layers parallel to bc plane.

Related literature top

For the identification, isolation, synthesis and characterization of quetiapine N-oxide, see: Mittapelli et al. (2010). For quantitative determination of quetiapine impurities, degradation products in pharmaceutical dosage form or in bulk, tablets, and in human plasma, see: Trivedi & Patel (2011); Belal et al. (2008). For the use of quetiapine as an antipsychotic drug, see: Lieberman (1996). For the crystal structure of quetiapine hemifumarate, see: Ravikumar & Sridhar (2005).

Experimental top

The crude product synthesized by reacting quetiapine hemifumarate with hydrogen peroxideis was supplied by Zhejiang Supor Pharmaceuticals Co., Ltd. It was recrystallized from ethanol solution, giving colourless crystals of (I) suitable for X-ray diffraction.

Refinement top

The H atoms were placed in calculated positions [O—H 0.82 Å; C—H 0.93–0.97 Å] and refinded as riding, with Uiso(H) = 1.2–1.5Ueq (carrier atom).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) showing atom-labelling scheme and 40% probability displacement ellipsoids. H atoms are shown as small circles of arbitary radii. Dashed line denotes hydrogen bond.
2-{2-[4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl 1-oxide]ethoxy}ethanol–fumaric acid (2/1) top
Crystal data top
C21H25N3O3S·0.5C4H4O4F(000) = 968
Mr = 457.54Dx = 1.350 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10875 reflections
a = 13.1299 (9) Åθ = 3.1–27.5°
b = 12.5047 (8) ŵ = 0.18 mm1
c = 13.9950 (9) ÅT = 296 K
β = 101.59 (2)°Platelet, colourless
V = 2250.9 (3) Å30.27 × 0.25 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3970 independent reflections
Radiation source: rolling anode2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.947, Tmax = 0.982l = 1616
17003 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.0701P)2 + 3.2854P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3970 reflectionsΔρmax = 0.37 e Å3
291 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0142 (18)
Crystal data top
C21H25N3O3S·0.5C4H4O4V = 2250.9 (3) Å3
Mr = 457.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1299 (9) ŵ = 0.18 mm1
b = 12.5047 (8) ÅT = 296 K
c = 13.9950 (9) Å0.27 × 0.25 × 0.10 mm
β = 101.59 (2)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3970 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2453 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.982Rint = 0.069
17003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
3970 reflectionsΔρmin = 0.39 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4958 (3)0.6665 (3)0.5761 (3)0.0441 (9)
C20.6017 (3)0.6567 (3)0.5537 (3)0.0433 (9)
C30.6156 (3)0.6002 (3)0.4723 (3)0.0490 (10)
H30.55910.56650.43320.059*
C40.7121 (4)0.5933 (3)0.4486 (3)0.0586 (11)
H40.72050.55540.39360.070*
C50.7957 (4)0.6424 (4)0.5060 (4)0.0688 (13)
H50.86010.64070.48800.083*
C60.7850 (4)0.6941 (4)0.5900 (4)0.0648 (12)
H60.84300.72350.63060.078*
C70.6881 (3)0.7027 (3)0.6146 (3)0.0486 (10)
C80.6330 (3)0.6545 (3)0.7814 (3)0.0522 (10)
C90.6911 (4)0.6175 (4)0.8694 (3)0.0683 (13)
H90.75360.65070.89640.082*
C100.6572 (4)0.5327 (4)0.9169 (3)0.0775 (15)
H100.69630.50900.97600.093*
C110.5653 (4)0.4833 (4)0.8767 (3)0.0718 (14)
H110.54290.42490.90820.086*
C120.5060 (4)0.5190 (3)0.7908 (3)0.0564 (11)
H120.44300.48580.76550.068*
C130.5391 (3)0.6045 (3)0.7405 (3)0.0477 (10)
C140.4310 (3)0.7560 (3)0.4149 (3)0.0501 (10)
H14A0.50380.75670.41030.060*
H14B0.40920.82920.42170.060*
C150.3672 (3)0.7076 (3)0.3242 (3)0.0519 (10)
H15A0.39120.63540.31620.062*
H15B0.37600.74910.26790.062*
C160.2418 (3)0.6465 (3)0.4204 (3)0.0472 (10)
H16A0.25920.57180.41420.057*
H16B0.16970.65030.42690.057*
C170.3100 (3)0.6920 (3)0.5109 (3)0.0491 (10)
H17A0.28760.76410.52200.059*
H17B0.30370.64870.56700.059*
C180.1943 (3)0.6514 (4)0.2394 (3)0.0634 (12)
H18A0.20700.68980.18270.076*
H18B0.22070.57930.23640.076*
C190.0792 (4)0.6461 (4)0.2346 (3)0.0675 (13)
H19A0.05630.71060.26250.081*
H19B0.04310.64130.16710.081*
C210.0675 (4)0.4476 (4)0.3412 (4)0.0770 (15)
H21A0.03220.38700.31920.092*
H21B0.03600.46070.40900.092*
C220.0380 (8)0.8697 (5)0.4497 (6)0.119 (3)
C230.0191 (6)0.9488 (5)0.4871 (6)0.119 (2)
H230.08590.93200.49520.142*
C200.0523 (3)0.5435 (4)0.2823 (4)0.0687 (13)
H20A0.08840.53400.21520.082*
H20B0.08020.60650.30840.082*
N10.4694 (2)0.6414 (3)0.6578 (2)0.0464 (8)
N20.4178 (2)0.6936 (3)0.4998 (2)0.0474 (8)
N30.2541 (2)0.7051 (2)0.3299 (2)0.0464 (8)
O10.2203 (2)0.8100 (2)0.3328 (2)0.0617 (8)
O20.0553 (2)0.5560 (2)0.2866 (2)0.0664 (9)
O30.1721 (3)0.4219 (3)0.3344 (3)0.0910 (12)
H3010.19620.39920.27960.136*
O40.1258 (4)0.8974 (4)0.4401 (4)0.1291 (18)
H4010.15990.85560.41470.194*
O50.0062 (6)0.7872 (6)0.4257 (6)0.195 (3)
S10.67581 (9)0.76727 (9)0.72389 (9)0.0615 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.039 (2)0.044 (2)0.0020 (17)0.0103 (18)0.0027 (17)
C20.048 (2)0.038 (2)0.045 (2)0.0006 (17)0.0131 (18)0.0029 (17)
C30.055 (3)0.045 (2)0.048 (2)0.0017 (19)0.0126 (19)0.0013 (19)
C40.068 (3)0.053 (3)0.059 (3)0.015 (2)0.022 (2)0.011 (2)
C50.055 (3)0.081 (3)0.075 (3)0.015 (3)0.025 (2)0.012 (3)
C60.049 (3)0.068 (3)0.076 (3)0.003 (2)0.011 (2)0.004 (3)
C70.047 (2)0.046 (2)0.052 (2)0.0020 (18)0.0093 (18)0.0001 (18)
C80.058 (3)0.048 (2)0.050 (2)0.004 (2)0.008 (2)0.0079 (19)
C90.069 (3)0.069 (3)0.058 (3)0.014 (2)0.008 (2)0.010 (2)
C100.100 (4)0.073 (3)0.052 (3)0.024 (3)0.003 (3)0.008 (3)
C110.102 (4)0.059 (3)0.053 (3)0.013 (3)0.012 (3)0.009 (2)
C120.070 (3)0.050 (2)0.049 (2)0.000 (2)0.011 (2)0.002 (2)
C130.054 (3)0.047 (2)0.042 (2)0.0098 (19)0.0086 (18)0.0052 (18)
C140.051 (2)0.050 (2)0.050 (2)0.0017 (19)0.0119 (18)0.0117 (19)
C150.052 (3)0.057 (3)0.049 (2)0.002 (2)0.0166 (19)0.0071 (19)
C160.047 (2)0.048 (2)0.049 (2)0.0000 (18)0.0159 (18)0.0054 (18)
C170.041 (2)0.062 (2)0.045 (2)0.0010 (19)0.0085 (17)0.0048 (19)
C180.060 (3)0.079 (3)0.049 (2)0.014 (2)0.006 (2)0.007 (2)
C190.065 (3)0.070 (3)0.060 (3)0.012 (2)0.003 (2)0.004 (2)
C210.078 (4)0.069 (3)0.083 (3)0.025 (3)0.014 (3)0.020 (3)
C220.200 (9)0.055 (4)0.130 (6)0.020 (5)0.103 (6)0.027 (4)
C230.113 (6)0.108 (5)0.133 (6)0.004 (5)0.018 (4)0.013 (5)
C200.050 (3)0.065 (3)0.090 (4)0.011 (2)0.012 (2)0.018 (3)
N10.048 (2)0.0485 (19)0.0425 (18)0.0038 (15)0.0094 (15)0.0007 (15)
N20.0392 (18)0.059 (2)0.0435 (18)0.0003 (15)0.0064 (14)0.0105 (15)
N30.049 (2)0.0425 (18)0.0467 (18)0.0004 (15)0.0072 (15)0.0051 (14)
O10.065 (2)0.0447 (16)0.0709 (19)0.0053 (14)0.0028 (15)0.0099 (14)
O20.0531 (19)0.0605 (19)0.083 (2)0.0114 (15)0.0065 (15)0.0023 (17)
O30.087 (3)0.091 (3)0.108 (3)0.033 (2)0.051 (2)0.045 (2)
O40.103 (4)0.108 (4)0.163 (5)0.011 (3)0.003 (3)0.033 (3)
O50.197 (7)0.132 (5)0.292 (9)0.037 (5)0.133 (6)0.052 (6)
S10.0640 (8)0.0544 (7)0.0645 (7)0.0083 (5)0.0087 (5)0.0151 (6)
Geometric parameters (Å, º) top
C1—N11.299 (5)C15—H15A0.9700
C1—N21.366 (5)C15—H15B0.9700
C1—C21.491 (5)C16—N31.500 (5)
C2—C31.384 (5)C16—C171.508 (5)
C2—C71.398 (5)C16—H16A0.9700
C3—C41.375 (6)C16—H16B0.9700
C3—H30.9300C17—N21.455 (5)
C4—C51.368 (6)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C61.374 (6)C18—C191.501 (6)
C5—H50.9300C18—N31.507 (5)
C6—C71.387 (6)C18—H18A0.9700
C6—H60.9300C18—H18B0.9700
C7—S11.765 (4)C19—O21.410 (5)
C8—C91.390 (6)C19—H19A0.9700
C8—C131.398 (6)C19—H19B0.9700
C8—S11.771 (4)C21—O31.394 (5)
C9—C101.372 (7)C21—C201.491 (7)
C9—H90.9300C21—H21A0.9700
C10—C111.372 (7)C21—H21B0.9700
C10—H100.9300C22—O51.138 (8)
C11—C121.370 (6)C22—O41.237 (8)
C11—H110.9300C22—C231.404 (9)
C12—C131.397 (6)C23—C23i1.396 (13)
C12—H120.9300C23—H230.9300
C13—N11.401 (5)C20—O21.411 (5)
C14—N21.461 (5)C20—H20A0.9700
C14—C151.501 (5)C20—H20B0.9700
C14—H14A0.9700N3—O11.388 (4)
C14—H14B0.9700O3—H3010.8200
C15—N31.504 (5)O4—H4010.8139
N1—C1—N2117.2 (4)N3—C16—H16B109.1
N1—C1—C2126.2 (3)C17—C16—H16B109.1
N2—C1—C2116.2 (3)H16A—C16—H16B107.9
C3—C2—C7119.2 (4)N2—C17—C16109.9 (3)
C3—C2—C1119.8 (3)N2—C17—H17A109.7
C7—C2—C1121.0 (3)C16—C17—H17A109.7
C4—C3—C2120.7 (4)N2—C17—H17B109.7
C4—C3—H3119.6C16—C17—H17B109.7
C2—C3—H3119.6H17A—C17—H17B108.2
C5—C4—C3120.0 (4)C19—C18—N3114.0 (4)
C5—C4—H4120.0C19—C18—H18A108.8
C3—C4—H4120.0N3—C18—H18A108.8
C4—C5—C6120.4 (4)C19—C18—H18B108.8
C4—C5—H5119.8N3—C18—H18B108.8
C6—C5—H5119.8H18A—C18—H18B107.7
C5—C6—C7120.4 (4)O2—C19—C18109.8 (4)
C5—C6—H6119.8O2—C19—H19A109.7
C7—C6—H6119.8C18—C19—H19A109.7
C6—C7—C2119.2 (4)O2—C19—H19B109.7
C6—C7—S1119.9 (3)C18—C19—H19B109.7
C2—C7—S1120.8 (3)H19A—C19—H19B108.2
C9—C8—C13119.7 (4)O3—C21—C20112.8 (5)
C9—C8—S1120.0 (4)O3—C21—H21A109.0
C13—C8—S1120.2 (3)C20—C21—H21A109.0
C10—C9—C8120.8 (5)O3—C21—H21B109.0
C10—C9—H9119.6C20—C21—H21B109.0
C8—C9—H9119.6H21A—C21—H21B107.8
C11—C10—C9119.6 (4)O5—C22—O4121.1 (8)
C11—C10—H10120.2O5—C22—C23123.8 (9)
C9—C10—H10120.2O4—C22—C23115.0 (7)
C12—C11—C10120.7 (5)C23i—C23—C22123.5 (10)
C12—C11—H11119.7C23i—C23—H23118.3
C10—C11—H11119.7C22—C23—H23118.3
C11—C12—C13120.9 (4)O2—C20—C21108.1 (4)
C11—C12—H12119.6O2—C20—H20A110.1
C13—C12—H12119.6C21—C20—H20A110.1
C12—C13—C8118.2 (4)O2—C20—H20B110.1
C12—C13—N1116.8 (4)C21—C20—H20B110.1
C8—C13—N1124.6 (4)H20A—C20—H20B108.4
N2—C14—C15109.5 (3)C1—N1—C13124.2 (3)
N2—C14—H14A109.8C1—N2—C17120.4 (3)
C15—C14—H14A109.8C1—N2—C14125.1 (3)
N2—C14—H14B109.8C17—N2—C14111.9 (3)
C15—C14—H14B109.8O1—N3—C16110.3 (3)
H14A—C14—H14B108.2O1—N3—C15107.9 (3)
C14—C15—N3110.7 (3)C16—N3—C15109.2 (3)
C14—C15—H15A109.5O1—N3—C18109.3 (3)
N3—C15—H15A109.5C16—N3—C18111.4 (3)
C14—C15—H15B109.5C15—N3—C18108.5 (3)
N3—C15—H15B109.5C19—O2—C20113.1 (4)
H15A—C15—H15B108.1C21—O3—H301109.5
N3—C16—C17112.3 (3)C22—O4—H401118.3
N3—C16—H16A109.1C7—S1—C897.02 (19)
C17—C16—H16A109.1
N1—C1—C2—C3125.9 (4)O4—C22—C23—C23i0.5 (15)
N2—C1—C2—C346.7 (5)O3—C21—C20—O2174.3 (4)
N1—C1—C2—C753.2 (6)N2—C1—N1—C13175.3 (3)
N2—C1—C2—C7134.2 (4)C2—C1—N1—C132.7 (6)
C7—C2—C3—C43.0 (6)C12—C13—N1—C1137.1 (4)
C1—C2—C3—C4177.8 (4)C8—C13—N1—C150.3 (6)
C2—C3—C4—C50.2 (6)N1—C1—N2—C171.1 (5)
C3—C4—C5—C63.3 (7)C2—C1—N2—C17172.2 (3)
C4—C5—C6—C73.9 (7)N1—C1—N2—C14158.9 (4)
C5—C6—C7—C21.0 (7)C2—C1—N2—C1427.8 (5)
C5—C6—C7—S1178.8 (4)C16—C17—N2—C1139.4 (4)
C3—C2—C7—C62.4 (6)C16—C17—N2—C1458.1 (4)
C1—C2—C7—C6178.4 (4)C15—C14—N2—C1137.9 (4)
C3—C2—C7—S1175.4 (3)C15—C14—N2—C1760.6 (4)
C1—C2—C7—S13.7 (5)C17—C16—N3—O164.5 (4)
C13—C8—C9—C100.2 (7)C17—C16—N3—C1554.0 (4)
S1—C8—C9—C10177.5 (4)C17—C16—N3—C18173.9 (3)
C8—C9—C10—C110.5 (7)C14—C15—N3—O164.2 (4)
C9—C10—C11—C121.3 (8)C14—C15—N3—C1655.8 (4)
C10—C11—C12—C131.8 (7)C14—C15—N3—C18177.5 (3)
C11—C12—C13—C81.5 (6)C19—C18—N3—O161.1 (5)
C11—C12—C13—N1174.6 (4)C19—C18—N3—C1661.1 (5)
C9—C8—C13—C120.7 (6)C19—C18—N3—C15178.6 (4)
S1—C8—C13—C12177.0 (3)C18—C19—O2—C20177.8 (4)
C9—C8—C13—N1173.3 (4)C21—C20—O2—C19178.9 (4)
S1—C8—C13—N14.5 (5)C6—C7—S1—C8116.3 (4)
N2—C14—C15—N359.1 (4)C2—C7—S1—C861.6 (4)
N3—C16—C17—N255.0 (4)C9—C8—S1—C7119.6 (4)
N3—C18—C19—O284.5 (5)C13—C8—S1—C762.6 (4)
O5—C22—C23—C23i177.4 (11)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H401···O10.811.622.394 (6)157
O3—H301···O1ii0.821.902.691 (4)161
Symmetry code: (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H25N3O3S·0.5C4H4O4
Mr457.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.1299 (9), 12.5047 (8), 13.9950 (9)
β (°) 101.59 (2)
V3)2250.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.27 × 0.25 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.947, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
17003, 3970, 2453
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.193, 1.00
No. of reflections3970
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.39

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H401···O10.811.622.394 (6)157
O3—H301···O1i0.821.902.691 (4)161
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This project was supported by Zhejiang Provincial Natural Science Foundation of China (grant No. J200801).

References

First citationBelal, F., Elbrashy, A., Eid, M. & Nasr, J. J. (2008). J. Liq. Chromatogr. Relat. Technol. 31, 1283–1298.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLieberman, J. A. (1996). J. Clin. Psychiatry, 57, 68–71.  CAS PubMed Web of Science Google Scholar
First citationMittapelli, V., Vadali, L., Sivalakshmi, D. A. & Suryanarayana, M. V. (2010). Rasayan J. Chem. 3, 677–680.  CAS Google Scholar
First citationRavikumar, K. & Sridhar, B. (2005). Acta Cryst. E61, o3245–o3248.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrivedi, R. K. & Patel, M. C. (2011). Sci. Pharm. 79, 97–111.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1753-o1754
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds