organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Bromo­phen­yl)acetic acid

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 30 April 2012; accepted 7 May 2012; online 12 May 2012)

In the title mol­ecule, C8H7BrO2, the carboxyl group is twisted by 76.2 (3)° from the benzene ring plane. In the crystal, mol­ecules are linked into inversion dimers through pairs of O—H⋯O hydrogen bonds. The dimers are further linked into layers parallel to the bc plane by weak C—H⋯O hydrogen bonds.

Related literature

For applications of the title compound, see: Deshpande et al. (2008[Deshpande, P. P., Nanduri, V. B., Pullockaran, A., Christie, H., Mueller, R. H. & Patel, R. N. (2008). J. Ind. Microbiol. Biotechnol. 35, 901-906.]); Rodriguesa et al. (2002[Rodriguesa, D. C., de Meijere, A. & Marsaioli, A. J. (2002). J. Braz. Chem. Soc. 13, 664-668.]); Pratt et al. (2000[Pratt, J., Jimonet, P., Bohme, G. A., Boireau, A., Damour, D., Debono, M. W., Borella, A. G., Randle, J. C. R., Ribeill, Y., Stutzmann, J.-M., Vuilhorgne, M. & Mignani, S. (2000). Bioorg. Med. Chem. Lett. 10, 2749-2754.]). For related structures, see: Hodgson & Asplund (1991[Hodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986-1987.]); Harris et al. (1994[Harris, K. D. M., Tremayne, M., Lightfoot, P. & Bruce, P. G. (1994). J. Am. Chem. Soc. 116, 3543-3547.]); Hartung et al. (2004[Hartung, J., Špehar, K., Svoboda, I. & Fuess, H. (2004). Acta Cryst. E60, o95-o96.]); Yuan et al. (2008[Yuan, Y.-Q., Guo, S.-R. & Wang, L.-J. (2008). Acta Cryst. E64, o2435.]); Jasinski et al.(2010[Jasinski, J. P., Butcher, R. J., Swamy, M. T., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2010). J. Chem. Crystallogr. 40, 25-28.]); Li et al. (2010[Li, J.-S., He, Q.-X. & Li, P.-Y. (2010). Acta Cryst. E66, o110.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7BrO2

  • Mr = 215.05

  • Monoclinic, P 21 /c

  • a = 8.9732 (5) Å

  • b = 5.9114 (3) Å

  • c = 15.8489 (7) Å

  • β = 99.529 (5)°

  • V = 829.09 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.90 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.370, Tmax = 1.000

  • 8471 measured reflections

  • 1628 independent reflections

  • 1248 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.096

  • S = 1.07

  • 1628 reflections

  • 105 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O9i 0.87 (7) 1.76 (7) 2.630 (4) 175 (3)
C6—H6⋯O9ii 0.93 2.57 3.453 (5) 158
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), has many applications in various syntheses, for example, in the synthesis of heterocyclic compounds (Deshpande et al., 2008) and in the synthesis of AMPA antagonists - substituted quinoxalinediones, quinolones, isatinoximes and benzodiazepine derivatives (Pratt et al., 2000). It can also be used in a gas chromatography as a phase transfer catalyst (Rodriguesa et al., 2002). Herein we report its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related structures (Hodgson & Asplund,1991; Harris et al., 1994; Hartung et al., 2004; Yuan et al., 2008; Jasinski et al., 2010; Li et al., 2010). The carboxyl group is twisted at 76.2 (3)° from the benzene ring plane. Intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers. Weak intermolecular C—H···O interactions (Table 1) link further these dimers into layers parallel to bc plane.

Related literature top

For applications of the title compound, see: Deshpande et al. (2008); Rodriguesa et al. (2002); Pratt et al. (2000). For related structures, see: Hodgson & Asplund (1991); Harris et al. (1994); Hartung et al. (2004); Yuan et al. (2008); Jasinski et al.(2010); Li et al. (2010).

Experimental top

The title compound was purchased from the Spectrochem Ltd., Mumbai. Single-crystals were grown from acetone and toluene(1:1) mixture by slow evaporation method.

Refinement top

Atom H8 was found in a difference map and isotropically refined. C-bound H atoms were positioned geometrically (C—H 0.93–0.97 Å), and were treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
2-(2-Bromophenyl)acetic acid top
Crystal data top
C8H7BrO2F(000) = 424
Mr = 215.05Dx = 1.723 Mg m3
Monoclinic, P21/cMelting point = 381–377 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.9732 (5) ÅCell parameters from 3025 reflections
b = 5.9114 (3) Åθ = 3.4–29.1°
c = 15.8489 (7) ŵ = 4.90 mm1
β = 99.529 (5)°T = 293 K
V = 829.09 (7) Å3Prism, white
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1628 independent reflections
Radiation source: fine-focus sealed tube1248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.7°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 77
Tmin = 0.370, Tmax = 1.000l = 1919
8471 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.055P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1628 reflectionsΔρmax = 0.55 e Å3
105 parametersΔρmin = 0.69 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.071 (3)
Crystal data top
C8H7BrO2V = 829.09 (7) Å3
Mr = 215.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9732 (5) ŵ = 4.90 mm1
b = 5.9114 (3) ÅT = 293 K
c = 15.8489 (7) Å0.3 × 0.2 × 0.2 mm
β = 99.529 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1628 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
1248 reflections with I > 2σ(I)
Tmin = 0.370, Tmax = 1.000Rint = 0.043
8471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.55 e Å3
1628 reflectionsΔρmin = 0.69 e Å3
105 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42140 (6)0.23223 (8)0.92648 (3)0.0681 (3)
C10.2498 (4)0.4863 (6)0.7908 (2)0.0427 (9)
C20.3352 (4)0.2936 (6)0.8109 (2)0.0395 (8)
C30.3640 (4)0.1404 (7)0.7497 (3)0.0498 (10)
H30.42080.01100.76540.060*
C40.3078 (6)0.1819 (8)0.6660 (3)0.0627 (12)
H40.32750.08130.62410.075*
C50.2223 (6)0.3715 (9)0.6430 (3)0.0689 (13)
H50.18390.39900.58570.083*
C60.1935 (5)0.5208 (7)0.7051 (3)0.0599 (12)
H60.13470.64800.68900.072*
C70.2239 (5)0.6574 (7)0.8568 (3)0.0570 (11)
H7A0.32110.70230.88870.068*
H7B0.17790.79060.82760.068*
O80.1337 (4)0.7126 (6)0.9850 (2)0.0710 (10)
C80.1266 (4)0.5795 (7)0.9188 (3)0.0520 (10)
O90.0457 (3)0.4130 (5)0.9081 (2)0.0650 (9)
H80.072 (7)0.678 (10)1.020 (5)0.11 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0835 (4)0.0712 (4)0.0440 (3)0.0020 (2)0.0059 (2)0.0091 (2)
C10.049 (2)0.0354 (19)0.047 (2)0.0069 (16)0.0158 (18)0.0034 (16)
C20.045 (2)0.041 (2)0.0330 (19)0.0082 (16)0.0085 (16)0.0050 (15)
C30.058 (2)0.043 (2)0.052 (3)0.0005 (18)0.021 (2)0.0007 (19)
C40.085 (3)0.059 (3)0.049 (3)0.015 (2)0.026 (2)0.014 (2)
C50.088 (3)0.079 (3)0.038 (3)0.007 (3)0.004 (2)0.007 (2)
C60.070 (3)0.053 (2)0.055 (3)0.007 (2)0.006 (2)0.016 (2)
C70.070 (3)0.040 (2)0.067 (3)0.005 (2)0.029 (2)0.004 (2)
O80.080 (2)0.069 (2)0.071 (2)0.0264 (17)0.0341 (19)0.0325 (17)
C80.053 (2)0.048 (2)0.058 (3)0.0015 (19)0.019 (2)0.010 (2)
O90.0697 (19)0.0631 (19)0.069 (2)0.0253 (16)0.0323 (16)0.0258 (16)
Geometric parameters (Å, º) top
Br1—C21.901 (4)C5—C61.378 (6)
C1—C21.380 (5)C5—H50.9300
C1—C61.383 (5)C6—H60.9300
C1—C71.502 (5)C7—C81.491 (6)
C2—C31.383 (5)C7—H7A0.9700
C3—C41.361 (6)C7—H7B0.9700
C3—H30.9300O8—C81.304 (5)
C4—C51.373 (7)O8—H80.87 (7)
C4—H40.9300C8—O91.218 (5)
C2—C1—C6116.6 (4)C6—C5—H5120.2
C2—C1—C7122.6 (4)C5—C6—C1121.7 (4)
C6—C1—C7120.8 (4)C5—C6—H6119.1
C1—C2—C3122.6 (4)C1—C6—H6119.1
C1—C2—Br1120.1 (3)C8—C7—C1115.2 (3)
C3—C2—Br1117.2 (3)C8—C7—H7A108.5
C4—C3—C2118.9 (4)C1—C7—H7A108.5
C4—C3—H3120.5C8—C7—H7B108.5
C2—C3—H3120.5C1—C7—H7B108.5
C3—C4—C5120.4 (4)H7A—C7—H7B107.5
C3—C4—H4119.8C8—O8—H8115 (4)
C5—C4—H4119.8O9—C8—O8123.3 (4)
C4—C5—C6119.7 (4)O9—C8—C7123.9 (4)
C4—C5—H5120.2O8—C8—C7112.8 (4)
C6—C1—C2—C30.2 (5)C4—C5—C6—C10.6 (7)
C7—C1—C2—C3177.4 (3)C2—C1—C6—C50.6 (6)
C6—C1—C2—Br1178.8 (3)C7—C1—C6—C5176.8 (4)
C7—C1—C2—Br11.5 (5)C2—C1—C7—C868.9 (5)
C1—C2—C3—C40.9 (6)C6—C1—C7—C8114.0 (4)
Br1—C2—C3—C4178.1 (3)C1—C7—C8—O915.8 (6)
C2—C3—C4—C50.9 (6)C1—C7—C8—O8166.1 (4)
C3—C4—C5—C60.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O9i0.87 (7)1.76 (7)2.630 (4)175 (3)
C6—H6···O9ii0.932.573.453 (5)158
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H7BrO2
Mr215.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.9732 (5), 5.9114 (3), 15.8489 (7)
β (°) 99.529 (5)
V3)829.09 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.90
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.370, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8471, 1628, 1248
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 1.07
No. of reflections1628
No. of parameters105
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.69

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O9i0.87 (7)1.76 (7)2.630 (4)175 (3)
C6—H6···O9ii0.932.573.453 (5)158
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003 and the University of Jammu, Jammu, India, for financial support. BN thanks the UGC for financial assistance through the SAP and BSR one-time grant for the purchase of chemicals.

References

First citationDeshpande, P. P., Nanduri, V. B., Pullockaran, A., Christie, H., Mueller, R. H. & Patel, R. N. (2008). J. Ind. Microbiol. Biotechnol. 35, 901–906.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarris, K. D. M., Tremayne, M., Lightfoot, P. & Bruce, P. G. (1994). J. Am. Chem. Soc. 116, 3543–3547.  CSD CrossRef CAS Web of Science Google Scholar
First citationHartung, J., Špehar, K., Svoboda, I. & Fuess, H. (2004). Acta Cryst. E60, o95–o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986–1987.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Swamy, M. T., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2010). J. Chem. Crystallogr. 40, 25–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J.-S., He, Q.-X. & Li, P.-Y. (2010). Acta Cryst. E66, o110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPratt, J., Jimonet, P., Bohme, G. A., Boireau, A., Damour, D., Debono, M. W., Borella, A. G., Randle, J. C. R., Ribeill, Y., Stutzmann, J.-M., Vuilhorgne, M. & Mignani, S. (2000). Bioorg. Med. Chem. Lett. 10, 2749–2754.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRodriguesa, D. C., de Meijere, A. & Marsaioli, A. J. (2002). J. Braz. Chem. Soc. 13, 664–668.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, Y.-Q., Guo, S.-R. & Wang, L.-J. (2008). Acta Cryst. E64, o2435.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds