organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(1H-benzimidazol-2-yl)pyridine butyric acid monosolvate dihydrate

aNortheast Dianli University, Jilin 132012, People's Republic of China
*Correspondence e-mail: songzhulin@hotmail.com

(Received 2 May 2012; accepted 15 May 2012; online 19 May 2012)

In the title compound, C19H13N5·C4H8O2·2H2O, the mol­ecular skeleton of the 2,6-bis­(benzimidazol-2-yl)pyridine (bbip) mol­ecule is essentially planar (r.m.s. deviation = 0.023 Å). An extensive three-dimensional network of inter­molecular N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds consolidates the crystal packing, which also exhibits ππ inter­actions between the five- and six-membered rings from neighbouring bbip mol­ecules.

Related literature

For background to supra­molecular inter­actions, see: Dale et al. (2004[Dale, S. H., Elsegood, M. R. J. & Coombs, A. E. L. (2004). CrystEngComm, 6, 328-335.]); Braga et al. (2005[Braga, D., Brammer, L. & Champness, N. R. (2005). CrystEngComm, 7, 1-19.]); Ring et al. (2006[Ring, D. J., Blake, A. J., Champness, N. R. & Wilson, C. (2006). CrystEngComm, 8, 29-32.]). For related structures, see: Freire et al. (2003[Freire, E., Baggio, S., Muñoz, J. C. & Baggio, R. (2003). Acta Cryst. C59, o259-o262.]); Xiao et al. (2010[Xiao, H., Wang, G. & Jian, F. (2010). Acta Cryst. C66, o446-o448.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13N5·C4H8O2·2H2O

  • Mr = 435.48

  • Triclinic, [P \overline 1]

  • a = 9.3950 (19) Å

  • b = 9.5611 (19) Å

  • c = 13.805 (3) Å

  • α = 103.27 (2)°

  • β = 99.91 (3)°

  • γ = 104.76 (3)°

  • V = 1131.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.982, Tmax = 0.987

  • 8683 measured reflections

  • 3981 independent reflections

  • 3195 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.144

  • S = 1.10

  • 3981 reflections

  • 318 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯O2W 0.90 (2) 2.12 (1) 3.006 (2) 166 (2)
N5—H1⋯O2W 0.86 (2) 2.234 (19) 3.083 (2) 169.1 (17)
O1W—H2W1⋯N4 0.83 (2) 1.96 (1) 2.7901 (19) 178 (3)
O2W—H2W2⋯O1Wi 0.82 (2) 2.04 (1) 2.852 (2) 168 (3)
O2W—H1W2⋯O1Wii 0.81 (2) 2.06 (1) 2.856 (2) 168 (3)
O1W—H1W1⋯O1iii 0.82 (2) 2.00 (1) 2.795 (2) 166 (3)
O2—H3⋯N2 0.85 (2) 1.89 (1) 2.712 (2) 164 (2)
Symmetry codes: (i) -x, -y+2, -z; (ii) x+1, y, z; (iii) -x-1, -y+1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Crystal engineering of extended frameworks can readily be achieved using a variety of supramolecular interactions (Braga et al., 2005; Ring et al., 2006). However, the prediction of the solid state packing of simple organic cocrystals still remains an ongoing challenge (Dale et al., 2004). The supramolecular interactions, such as hydrogen bonding and π-π stacking interactions, can create network materials with infinite 1-D, 2-D or 3-D structural motifs. The supramolecular structures with 2,6-bis(benzimidazol-2-yl)pyridine have been reported in recent year (Freire et al., 2003; Xiao et al., 2010). As a continuation of those works, we report the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related structures (Freire et al., 2003; Xiao et al., 2010). The aromatic C—C and C—N bond lengths in both the benzimidazole and pyridine rings are within the usual range. All C and N atoms in the 2,6-bis(benzimidazol-2-yl)pyridine molecule are almost coplanr with the largest deviation of 0.060 Å for C4.

In the crystal, the N—H···O, N—H···O and O—H···O hydrogen bonds (Table 1) consolidate the packing, which exhibits ππ interactions with the following center-to-center distances - Cg1···Cg1=3.625 (2) Å and Cg2···Cg3=3.775 (2) Å, where Cg1, Cg2 and Cg3 are centroids of N4/C13/N5/C19/C14, C14—C19 and N3/C8—C12, respectively.

Related literature top

For background to supramolecular interactions, see: Dale et al. (2004); Braga et al. (2005); Ring et al. (2006). For related structures, see: Freire et al. (2003); Xiao et al. (2010).

Experimental top

2,6-Bis(benzimidazol-2-yl)pyridine (0.062 g, 0.20 mmol) and butyric acid (0.018 g, 0.20 mmol) were dissolved in 30 ml solution mixed with ethanol and water by 2:1(V/V), then heated to refluxed for 6 h and cooled to the room temperature. Single crystals suitable for X-ray measurements were obtained by recrystallization at room temperature.

Refinement top

N- and O-bound H atoms were found in a difference Fourier map, and isotropically refined with the restraints (O—H = 0.82 (2), 0.85 (2) Å; N—H = 0.88 (2) Å). C-bound H atoms were fixed geometrically (C—H = 0.93–0.97 Å), and refined as riding, with Uiso(H) =1.2–1.5 Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.
2,6-Bis(1H-benzimidazol-2-yl)pyridine butyric acid monosolvate dihydrate top
Crystal data top
C19H13N5·C4H8O2·2H2OZ = 2
Mr = 435.48F(000) = 460
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3950 (19) ÅCell parameters from 25 reflections
b = 9.5611 (19) Åθ = 4–14°
c = 13.805 (3) ŵ = 0.09 mm1
α = 103.27 (2)°T = 295 K
β = 99.91 (3)°Block, colourless
γ = 104.76 (3)°0.20 × 0.18 × 0.15 mm
V = 1131.5 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3195 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
ω scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 1110
Tmin = 0.982, Tmax = 0.987l = 1616
8683 measured reflections3 standard reflections every 100 reflections
3981 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0925P)2 + 0.059P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3981 reflectionsΔρmax = 0.22 e Å3
318 parametersΔρmin = 0.25 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.007 (3)
Crystal data top
C19H13N5·C4H8O2·2H2Oγ = 104.76 (3)°
Mr = 435.48V = 1131.5 (4) Å3
Triclinic, P1Z = 2
a = 9.3950 (19) ÅMo Kα radiation
b = 9.5611 (19) ŵ = 0.09 mm1
c = 13.805 (3) ÅT = 295 K
α = 103.27 (2)°0.20 × 0.18 × 0.15 mm
β = 99.91 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3195 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.982, Tmax = 0.9873 standard reflections every 100 reflections
8683 measured reflections intensity decay: none
3981 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0456 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.22 e Å3
3981 reflectionsΔρmin = 0.25 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.12979 (14)0.51453 (15)0.18153 (10)0.0466 (3)
N20.05854 (14)0.30191 (14)0.26517 (10)0.0482 (3)
N30.04327 (13)0.62903 (14)0.06414 (9)0.0407 (3)
N40.10826 (15)0.91520 (15)0.12949 (10)0.0473 (3)
N50.10055 (14)0.91107 (14)0.07405 (10)0.0423 (3)
C10.06996 (18)0.29713 (18)0.30066 (12)0.0491 (4)
C20.0931 (2)0.1845 (2)0.37465 (15)0.0685 (5)
H2B0.01510.09570.41000.082*
C30.2354 (2)0.2091 (2)0.39367 (18)0.0796 (6)
H3B0.25280.13630.44370.095*
C40.3535 (2)0.3401 (3)0.33982 (19)0.0801 (7)
H4B0.44850.35170.35380.096*
C50.3335 (2)0.4530 (2)0.26625 (15)0.0652 (5)
H5B0.41260.54060.23030.078*
C60.18948 (18)0.42972 (18)0.24846 (12)0.0479 (4)
C70.01687 (16)0.43359 (16)0.19367 (11)0.0424 (4)
C80.11129 (17)0.49146 (16)0.13058 (11)0.0422 (4)
C90.25971 (18)0.40738 (18)0.13928 (13)0.0526 (4)
H9A0.30280.31160.18570.063*
C100.34091 (19)0.46967 (19)0.07748 (14)0.0575 (5)
H10A0.44050.41620.08160.069*
C110.27421 (18)0.61135 (18)0.00955 (13)0.0511 (4)
H11A0.32770.65550.03260.061*
C120.12534 (16)0.68670 (16)0.00542 (11)0.0408 (4)
C130.04638 (16)0.83768 (16)0.06640 (11)0.0409 (3)
C140.00703 (18)1.04751 (17)0.18249 (11)0.0464 (4)
C150.0069 (2)1.1702 (2)0.25982 (14)0.0621 (5)
H15A0.07941.17160.28390.075*
C160.1385 (2)1.2887 (2)0.29928 (15)0.0689 (5)
H16A0.14121.37160.35110.083*
C170.2687 (2)1.2877 (2)0.26338 (14)0.0633 (5)
H17A0.35561.37050.29180.076*
C180.27226 (19)1.16824 (18)0.18751 (13)0.0536 (4)
H18A0.35891.16820.16360.064*
C190.13926 (17)1.04728 (17)0.14830 (11)0.0438 (4)
O10.44196 (15)0.06635 (14)0.27630 (11)0.0743 (4)
O20.28356 (15)0.04486 (15)0.37563 (10)0.0657 (4)
C200.7674 (3)0.3547 (3)0.4697 (2)0.1110 (10)
H20A0.85950.38500.44810.167*
H20B0.71830.43170.47250.167*
H20C0.79090.34040.53660.167*
C210.6624 (2)0.2079 (2)0.39388 (18)0.0824 (7)
H21A0.71390.13150.39020.099*
H21B0.64110.22280.32630.099*
C220.5148 (2)0.1512 (2)0.42169 (14)0.0611 (5)
H22A0.46180.22610.42270.073*
H22B0.53660.14080.49050.073*
C230.41213 (18)0.00337 (18)0.35032 (13)0.0500 (4)
O1W0.40511 (15)0.92334 (16)0.11934 (11)0.0647 (4)
O2W0.32779 (16)0.81969 (16)0.04472 (12)0.0690 (4)
H20.1745 (19)0.6070 (13)0.1365 (11)0.057 (5)*
H10.156 (2)0.873 (2)0.0390 (14)0.056 (5)*
H2W10.3168 (14)0.920 (3)0.1236 (19)0.100 (8)*
H2W20.350 (3)0.885 (2)0.0747 (19)0.116 (10)*
H1W20.407 (2)0.839 (3)0.0027 (17)0.129 (12)*
H1W10.435 (3)0.928 (3)0.1717 (13)0.106 (9)*
H30.228 (2)0.1309 (16)0.3376 (16)0.096 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0350 (7)0.0439 (7)0.0510 (7)0.0049 (5)0.0084 (6)0.0045 (6)
N20.0399 (7)0.0449 (7)0.0514 (7)0.0072 (6)0.0116 (6)0.0037 (6)
N30.0329 (6)0.0430 (7)0.0420 (6)0.0082 (5)0.0075 (5)0.0094 (5)
N40.0398 (7)0.0497 (7)0.0466 (7)0.0087 (6)0.0125 (6)0.0070 (6)
N50.0336 (7)0.0437 (7)0.0456 (7)0.0076 (5)0.0109 (5)0.0089 (6)
C10.0409 (9)0.0491 (9)0.0513 (9)0.0088 (7)0.0121 (7)0.0078 (7)
C20.0587 (11)0.0579 (11)0.0726 (12)0.0080 (9)0.0231 (9)0.0063 (9)
C30.0684 (13)0.0722 (13)0.0897 (14)0.0193 (10)0.0379 (11)0.0039 (11)
C40.0530 (12)0.0789 (13)0.1034 (16)0.0164 (10)0.0377 (11)0.0069 (12)
C50.0414 (9)0.0656 (11)0.0781 (12)0.0069 (8)0.0204 (9)0.0071 (10)
C60.0401 (8)0.0490 (8)0.0510 (9)0.0116 (7)0.0120 (7)0.0094 (7)
C70.0351 (8)0.0431 (8)0.0445 (8)0.0082 (6)0.0065 (6)0.0106 (6)
C80.0364 (8)0.0405 (7)0.0456 (8)0.0082 (6)0.0073 (6)0.0104 (6)
C90.0399 (9)0.0417 (8)0.0638 (10)0.0011 (7)0.0123 (8)0.0048 (7)
C100.0368 (8)0.0498 (9)0.0759 (12)0.0013 (7)0.0209 (8)0.0102 (8)
C110.0403 (9)0.0485 (9)0.0615 (10)0.0072 (7)0.0215 (7)0.0104 (7)
C120.0337 (8)0.0426 (8)0.0441 (8)0.0075 (6)0.0092 (6)0.0138 (6)
C130.0340 (8)0.0431 (8)0.0415 (8)0.0064 (6)0.0079 (6)0.0114 (6)
C140.0438 (9)0.0447 (8)0.0432 (8)0.0073 (7)0.0080 (7)0.0076 (7)
C150.0603 (11)0.0585 (10)0.0579 (10)0.0134 (9)0.0179 (8)0.0011 (8)
C160.0769 (14)0.0522 (10)0.0569 (10)0.0108 (9)0.0056 (9)0.0058 (8)
C170.0569 (11)0.0499 (9)0.0618 (11)0.0010 (8)0.0030 (9)0.0077 (8)
C180.0413 (9)0.0513 (9)0.0569 (10)0.0023 (7)0.0027 (7)0.0138 (8)
C190.0387 (8)0.0453 (8)0.0416 (8)0.0073 (6)0.0041 (6)0.0118 (7)
O10.0559 (8)0.0539 (7)0.0927 (10)0.0011 (6)0.0302 (7)0.0089 (7)
O20.0543 (8)0.0667 (8)0.0587 (7)0.0007 (6)0.0171 (6)0.0021 (6)
C200.103 (2)0.0735 (15)0.1010 (18)0.0274 (14)0.0127 (15)0.0078 (13)
C210.0645 (13)0.0620 (12)0.0910 (15)0.0090 (10)0.0110 (11)0.0033 (11)
C220.0641 (12)0.0533 (9)0.0529 (9)0.0096 (9)0.0011 (8)0.0096 (8)
C230.0453 (9)0.0477 (9)0.0533 (9)0.0119 (7)0.0087 (7)0.0123 (7)
O1W0.0420 (7)0.0799 (9)0.0668 (8)0.0146 (6)0.0135 (6)0.0150 (7)
O2W0.0487 (8)0.0607 (8)0.0793 (9)0.0024 (6)0.0019 (7)0.0172 (7)
Geometric parameters (Å, º) top
N1—C71.358 (2)C11—H11A0.9300
N1—C61.375 (2)C12—C131.470 (2)
N1—H20.90 (2)C14—C151.393 (2)
N2—C71.3259 (19)C14—C191.403 (2)
N2—C11.386 (2)C15—C161.371 (3)
N3—C121.3350 (19)C15—H15A0.9300
N3—C81.3401 (19)C16—C171.398 (3)
N4—C131.3203 (19)C16—H16A0.9300
N4—C141.383 (2)C17—C181.373 (3)
N5—C131.3533 (19)C17—H17A0.9300
N5—C191.377 (2)C18—C191.391 (2)
N5—H10.86 (2)C18—H18A0.9300
C1—C21.393 (2)O1—C231.203 (2)
C1—C61.401 (2)O2—C231.315 (2)
C2—C31.379 (3)O2—H30.85 (2)
C2—H2B0.9300C20—C211.518 (3)
C3—C41.391 (3)C20—H20A0.9600
C3—H3B0.9300C20—H20B0.9600
C4—C51.378 (3)C20—H20C0.9600
C4—H4B0.9300C21—C221.504 (3)
C5—C61.388 (2)C21—H21A0.9700
C5—H5B0.9300C21—H21B0.9700
C7—C81.465 (2)C22—C231.496 (2)
C8—C91.390 (2)C22—H22A0.9700
C9—C101.374 (2)C22—H22B0.9700
C9—H9A0.9300O1W—H2W10.83 (2)
C10—C111.374 (2)O1W—H1W10.82 (2)
C10—H10A0.9300O2W—H2W20.82 (2)
C11—C121.385 (2)O2W—H1W20.81 (2)
C7—N1—C6107.54 (13)N4—C13—N5113.13 (13)
C7—N1—H2123.1 (12)N4—C13—C12124.76 (13)
C6—N1—H2129.3 (12)N5—C13—C12122.12 (13)
C7—N2—C1104.86 (13)N4—C14—C15129.84 (16)
C12—N3—C8117.15 (13)N4—C14—C19110.09 (13)
C13—N4—C14104.64 (13)C15—C14—C19120.07 (16)
C13—N5—C19107.30 (13)C16—C15—C14117.73 (18)
C13—N5—H1123.4 (13)C16—C15—H15A121.1
C19—N5—H1129.3 (13)C14—C15—H15A121.1
N2—C1—C2130.11 (16)C15—C16—C17121.52 (17)
N2—C1—C6109.96 (14)C15—C16—H16A119.2
C2—C1—C6119.92 (16)C17—C16—H16A119.2
C3—C2—C1117.73 (18)C18—C17—C16122.03 (17)
C3—C2—H2B121.1C18—C17—H17A119.0
C1—C2—H2B121.1C16—C17—H17A119.0
C2—C3—C4121.61 (18)C17—C18—C19116.43 (17)
C2—C3—H3B119.2C17—C18—H18A121.8
C4—C3—H3B119.2C19—C18—H18A121.8
C5—C4—C3121.71 (18)N5—C19—C18132.95 (15)
C5—C4—H4B119.1N5—C19—C14104.84 (14)
C3—C4—H4B119.1C18—C19—C14122.20 (15)
C4—C5—C6116.72 (18)C23—O2—H3113.9 (17)
C4—C5—H5B121.6C21—C20—H20A109.5
C6—C5—H5B121.6C21—C20—H20B109.5
N1—C6—C5132.63 (16)H20A—C20—H20B109.5
N1—C6—C1105.07 (14)C21—C20—H20C109.5
C5—C6—C1122.27 (16)H20A—C20—H20C109.5
N2—C7—N1112.57 (13)H20B—C20—H20C109.5
N2—C7—C8126.42 (14)C22—C21—C20113.3 (2)
N1—C7—C8121.00 (13)C22—C21—H21A108.9
N3—C8—C9123.26 (14)C20—C21—H21A108.9
N3—C8—C7115.06 (13)C22—C21—H21B108.9
C9—C8—C7121.67 (14)C20—C21—H21B108.9
C10—C9—C8118.15 (15)H21A—C21—H21B107.7
C10—C9—H9A120.9C23—C22—C21114.24 (16)
C8—C9—H9A120.9C23—C22—H22A108.7
C9—C10—C11119.67 (15)C21—C22—H22A108.7
C9—C10—H10A120.2C23—C22—H22B108.7
C11—C10—H10A120.2C21—C22—H22B108.7
C10—C11—C12118.33 (15)H22A—C22—H22B107.6
C10—C11—H11A120.8O1—C23—O2122.25 (16)
C12—C11—H11A120.8O1—C23—C22124.19 (16)
N3—C12—C11123.43 (14)O2—C23—C22113.56 (15)
N3—C12—C13115.37 (13)H2W1—O1W—H1W1117 (3)
C11—C12—C13121.19 (14)H2W2—O2W—H1W2102 (3)
C7—N2—C1—C2178.8 (2)C8—N3—C12—C13179.95 (13)
C7—N2—C1—C60.07 (19)C10—C11—C12—N30.1 (3)
N2—C1—C2—C3178.9 (2)C10—C11—C12—C13179.18 (15)
C6—C1—C2—C30.1 (3)C14—N4—C13—N50.62 (17)
C1—C2—C3—C41.3 (4)C14—N4—C13—C12179.13 (14)
C2—C3—C4—C51.3 (4)C19—N5—C13—N40.37 (18)
C3—C4—C5—C60.0 (4)C19—N5—C13—C12179.38 (13)
C7—N1—C6—C5177.18 (19)N3—C12—C13—N4178.66 (14)
C7—N1—C6—C10.76 (18)C11—C12—C13—N42.0 (2)
C4—C5—C6—N1178.9 (2)N3—C12—C13—N51.6 (2)
C4—C5—C6—C11.2 (3)C11—C12—C13—N5177.75 (14)
N2—C1—C6—N10.43 (19)C13—N4—C14—C15178.98 (18)
C2—C1—C6—N1179.43 (17)C13—N4—C14—C190.63 (17)
N2—C1—C6—C5177.78 (16)N4—C14—C15—C16179.71 (17)
C2—C1—C6—C51.2 (3)C19—C14—C15—C160.7 (3)
C1—N2—C7—N10.58 (18)C14—C15—C16—C170.2 (3)
C1—N2—C7—C8178.33 (15)C15—C16—C17—C180.4 (3)
C6—N1—C7—N20.87 (19)C16—C17—C18—C190.3 (3)
C6—N1—C7—C8178.11 (14)C13—N5—C19—C18179.13 (17)
C12—N3—C8—C91.1 (2)C13—N5—C19—C140.05 (17)
C12—N3—C8—C7179.62 (13)C17—C18—C19—N5179.70 (17)
N2—C7—C8—N3179.30 (14)C17—C18—C19—C141.2 (2)
N1—C7—C8—N31.9 (2)N4—C14—C19—N50.42 (17)
N2—C7—C8—C91.4 (3)C15—C14—C19—N5179.24 (15)
N1—C7—C8—C9177.42 (15)N4—C14—C19—C18178.87 (14)
N3—C8—C9—C100.9 (3)C15—C14—C19—C181.5 (3)
C7—C8—C9—C10179.91 (15)C20—C21—C22—C23177.6 (2)
C8—C9—C10—C110.1 (3)C21—C22—C23—O10.2 (3)
C9—C10—C11—C120.4 (3)C21—C22—C23—O2179.94 (17)
C8—N3—C12—C110.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O2W0.90 (2)2.12 (1)3.006 (2)166 (2)
N5—H1···O2W0.86 (2)2.234 (19)3.083 (2)169.1 (17)
O1W—H2W1···N40.83 (2)1.96 (1)2.7901 (19)178 (3)
O2W—H2W2···O1Wi0.82 (2)2.04 (1)2.852 (2)168 (3)
O2W—H1W2···O1Wii0.81 (2)2.06 (1)2.856 (2)168 (3)
O1W—H1W1···O1iii0.82 (2)2.00 (1)2.795 (2)166 (3)
O2—H3···N20.85 (2)1.89 (1)2.712 (2)164 (2)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H13N5·C4H8O2·2H2O
Mr435.48
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.3950 (19), 9.5611 (19), 13.805 (3)
α, β, γ (°)103.27 (2), 99.91 (3), 104.76 (3)
V3)1131.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.982, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8683, 3981, 3195
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.144, 1.10
No. of reflections3981
No. of parameters318
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O2W0.90 (2)2.124 (10)3.006 (2)165.6 (16)
N5—H1···O2W0.86 (2)2.234 (19)3.083 (2)169.1 (17)
O1W—H2W1···N40.83 (2)1.961 (10)2.7901 (19)178 (3)
O2W—H2W2···O1Wi0.82 (2)2.042 (12)2.852 (2)168 (3)
O2W—H1W2···O1Wii0.81 (2)2.056 (12)2.856 (2)168 (3)
O1W—H1W1···O1iii0.82 (2)1.996 (12)2.795 (2)166 (3)
O2—H3···N20.85 (2)1.890 (12)2.712 (2)164 (2)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z; (iii) x1, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 51003010), the Natural Science Foundation of Jilin Province (grant No. 201115178) and the Science and Technology Development Project of Jilin Province (grant No. SKLSSM201132).

References

First citationBraga, D., Brammer, L. & Champness, N. R. (2005). CrystEngComm, 7, 1–19.  Web of Science CrossRef CAS Google Scholar
First citationDale, S. H., Elsegood, M. R. J. & Coombs, A. E. L. (2004). CrystEngComm, 6, 328–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreire, E., Baggio, S., Muñoz, J. C. & Baggio, R. (2003). Acta Cryst. C59, o259–o262.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRing, D. J., Blake, A. J., Champness, N. R. & Wilson, C. (2006). CrystEngComm, 8, 29–32.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H., Wang, G. & Jian, F. (2010). Acta Cryst. C66, o446–o448.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds