organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[4-(3-Bromo­prop­­oxy)phen­yl]-2-p-tolyl­diazene

aDepartment of Respiratory Medicine, First Hospital, Jilin University, Changchun 130021, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: yuzhenxiang2005@hotmail.com

(Received 6 May 2012; accepted 11 May 2012; online 16 May 2012)

In the title mol­ecule, C16H17BrN2O, the benzene rings, bridged by a diazene fragment, form a dihedral angle of 6.3 (2)°. The crystal packing exhibits relatively short Br⋯Br contacts of 3.6989 (14) Å.

Related literature

For the crystal structure of (E)-4-(p-tolydiazen­yl)phenol, see: Petek et al. (2006[Petek, H., Erşahin, F., Albayrak, Ç., Ağar, E. & Şenel, İ. (2006). Acta Cryst. E62, o5874-o5875.]). For details of the synthesis, see: Badawi et al. (2006[Badawi, A. M., Azzam, E. M. S. & Morsy, S. M. (2006). Bioorg. Med. Chem. 14, 8661-8665.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17BrN2O

  • Mr = 333.23

  • Monoclinic, P 21 /c

  • a = 26.530 (15) Å

  • b = 4.785 (2) Å

  • c = 11.810 (7) Å

  • β = 102.85 (2)°

  • V = 1461.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.81 mm−1

  • T = 293 K

  • 0.24 × 0.23 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.553, Tmax = 0.574

  • 13590 measured reflections

  • 3337 independent reflections

  • 1860 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.180

  • S = 1.01

  • 3337 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The azobenzene and its derivate have been widely investigated due to the trans-cis transformations of N=N double bond caused by heating, light or other effects. Herein, we report the crystal structure of the title compound (I), which is a new derivate of azobenzene.

In (I) (Fig. 1), all bond lengths and angles are in normal ranges and comparable with those in similar structure (Petek et al., 2006). The dihedral angle between the two aromatic rings is 6.3 (2)°. The crystal packing exhibits relatively short intermolecular Br···Br contacts of 3.6989 (14) Å.

Related literature top

For the crystal structure of (E)-4-(p-tolydiazenyl)phenol, see: Petek et al. (2006). For details of the synthesis, see: Badawi et al. (2006).

Experimental top

The title compound was prepared by refluxing 4-((4-methylphenyl)azo)phenol with 1,3-dibromopropane in acetone according to the known procedure (Badawi et al. 2006). Single crystals suitable for X-ray diffraction were obtained by slow evaporation method at room temperature.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model with Uiso(H) = 1.5 or 1.2 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 30% probalility level.
(E)-1-[4-(3-Bromopropoxy)phenyl]-2-p-tolyldiazene top
Crystal data top
C16H17BrN2OF(000) = 680
Mr = 333.23Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6956 reflections
a = 26.530 (15) Åθ = 3.4–27.5°
b = 4.785 (2) ŵ = 2.81 mm1
c = 11.810 (7) ÅT = 293 K
β = 102.85 (2)°Block, yellow
V = 1461.8 (13) Å30.24 × 0.23 × 0.22 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3337 independent reflections
Radiation source: fine-focus sealed tube1860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3433
Tmin = 0.553, Tmax = 0.574k = 66
13590 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0906P)2]
where P = (Fo2 + 2Fc2)/3
3337 reflections(Δ/σ)max = 0.012
182 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C16H17BrN2OV = 1461.8 (13) Å3
Mr = 333.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 26.530 (15) ŵ = 2.81 mm1
b = 4.785 (2) ÅT = 293 K
c = 11.810 (7) Å0.24 × 0.23 × 0.22 mm
β = 102.85 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3337 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1860 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.574Rint = 0.080
13590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.01Δρmax = 0.40 e Å3
3337 reflectionsΔρmin = 0.59 e Å3
182 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03507 (2)1.74980 (10)0.35896 (4)0.0780 (3)
C10.07293 (17)1.5076 (9)0.4814 (4)0.0666 (12)
H1A0.04931.37360.50310.080*
H1B0.09901.40480.45270.080*
C20.09770 (19)1.6700 (8)0.5834 (4)0.0638 (12)
H2A0.07161.77720.61020.077*
H2B0.12191.80080.56170.077*
C30.12642 (16)1.4854 (7)0.6820 (3)0.0555 (10)
H3A0.14141.59840.74930.067*
H3B0.10291.35140.70420.067*
C40.19783 (14)1.1643 (7)0.7148 (3)0.0438 (8)
C50.23339 (14)1.0199 (7)0.6659 (3)0.0461 (9)
H50.23511.05420.58930.055*
C60.26574 (16)0.8279 (7)0.7304 (3)0.0475 (9)
H60.28970.73340.69770.057*
C70.26299 (16)0.7723 (6)0.8464 (4)0.0436 (9)
C80.22842 (15)0.9224 (7)0.8937 (3)0.0486 (9)
H80.22720.89240.97080.058*
C90.19546 (15)1.1169 (7)0.8291 (3)0.0475 (9)
H90.17201.21440.86210.057*
C100.35721 (16)0.2505 (6)0.9470 (3)0.0426 (8)
C110.39446 (15)0.1260 (8)0.8990 (3)0.0498 (9)
H110.39690.17420.82410.060*
C120.42806 (15)0.0681 (7)0.9600 (3)0.0490 (9)
H120.45310.14740.92600.059*
C130.42526 (14)0.1473 (7)1.0710 (3)0.0395 (8)
C140.38674 (14)0.0307 (7)1.1179 (3)0.0453 (9)
H140.38320.08701.19110.054*
C150.35311 (15)0.1696 (7)1.0573 (3)0.0470 (9)
H150.32790.24891.09090.056*
C160.46205 (15)0.3593 (9)1.1367 (3)0.0514 (10)
H16A0.46530.33271.21860.077*
H16B0.49530.33731.11830.077*
H16C0.44910.54381.11540.077*
N10.29418 (12)0.5728 (6)0.9213 (3)0.0476 (8)
N20.32604 (13)0.4536 (6)0.8743 (3)0.0474 (8)
O10.16630 (11)1.3435 (5)0.6400 (2)0.0526 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0757 (4)0.0956 (5)0.0551 (3)0.0036 (3)0.0017 (3)0.0109 (2)
C10.059 (3)0.072 (3)0.064 (3)0.003 (2)0.005 (2)0.000 (2)
C20.064 (3)0.057 (2)0.062 (3)0.011 (2)0.003 (2)0.004 (2)
C30.056 (3)0.052 (2)0.056 (2)0.0144 (19)0.005 (2)0.0005 (18)
C40.038 (2)0.0410 (17)0.048 (2)0.0028 (15)0.0019 (17)0.0006 (16)
C50.046 (2)0.052 (2)0.0408 (19)0.0021 (17)0.0106 (17)0.0005 (17)
C60.043 (2)0.0473 (19)0.052 (2)0.0040 (16)0.0107 (18)0.0037 (16)
C70.044 (2)0.0375 (17)0.046 (2)0.0043 (16)0.0021 (17)0.0009 (15)
C80.055 (2)0.047 (2)0.045 (2)0.0017 (18)0.0115 (18)0.0027 (16)
C90.045 (2)0.0459 (18)0.051 (2)0.0026 (17)0.0104 (18)0.0006 (17)
C100.045 (2)0.0383 (17)0.0410 (19)0.0010 (16)0.0025 (17)0.0022 (15)
C110.055 (3)0.055 (2)0.039 (2)0.0079 (19)0.0093 (18)0.0049 (17)
C120.053 (2)0.050 (2)0.046 (2)0.0090 (18)0.0162 (18)0.0032 (17)
C130.044 (2)0.0343 (16)0.0392 (19)0.0036 (15)0.0063 (16)0.0017 (14)
C140.052 (2)0.0468 (19)0.0373 (19)0.0034 (17)0.0109 (17)0.0010 (16)
C150.043 (2)0.0472 (18)0.052 (2)0.0009 (16)0.0138 (19)0.0076 (16)
C160.049 (2)0.0476 (19)0.055 (2)0.0024 (18)0.005 (2)0.0058 (17)
N10.0466 (19)0.0482 (17)0.0462 (18)0.0038 (15)0.0068 (15)0.0052 (14)
N20.0490 (19)0.0426 (16)0.0492 (18)0.0005 (14)0.0078 (15)0.0032 (14)
O10.0480 (17)0.0547 (14)0.0530 (16)0.0102 (13)0.0070 (13)0.0100 (13)
Geometric parameters (Å, º) top
Br1—C11.948 (4)C7—N11.433 (5)
Br1—Br1i3.6989 (14)C8—C91.384 (5)
Br1—Br1ii3.6989 (14)C8—H80.9300
C1—C21.461 (6)C9—H90.9300
C1—H1A0.9700C10—C111.379 (5)
C1—H1B0.9700C10—C151.387 (5)
C2—C31.524 (5)C10—N21.432 (4)
C2—H2A0.9700C11—C121.375 (5)
C2—H2B0.9700C11—H110.9300
C3—O11.435 (4)C12—C131.382 (5)
C3—H3A0.9700C12—H120.9300
C3—H3B0.9700C13—C141.383 (5)
C4—O11.373 (5)C13—C161.499 (5)
C4—C91.384 (5)C14—C151.394 (5)
C4—C51.395 (5)C14—H140.9300
C5—C61.367 (5)C15—H150.9300
C5—H50.9300C16—H16A0.9600
C6—C71.413 (5)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—C81.378 (5)N1—N21.248 (4)
C1—Br1—Br1i103.19 (13)C7—C8—C9121.6 (4)
C1—Br1—Br1ii176.05 (13)C7—C8—H8119.2
Br1i—Br1—Br1ii80.61 (4)C9—C8—H8119.2
C2—C1—Br1111.0 (3)C4—C9—C8119.2 (4)
C2—C1—H1A109.4C4—C9—H9120.4
Br1—C1—H1A109.4C8—C9—H9120.4
C2—C1—H1B109.4C11—C10—C15118.6 (3)
Br1—C1—H1B109.4C11—C10—N2114.7 (3)
H1A—C1—H1B108.0C15—C10—N2126.7 (3)
C1—C2—C3112.2 (3)C12—C11—C10121.1 (3)
C1—C2—H2A109.2C12—C11—H11119.5
C3—C2—H2A109.2C10—C11—H11119.5
C1—C2—H2B109.2C11—C12—C13121.1 (3)
C3—C2—H2B109.2C11—C12—H12119.4
H2A—C2—H2B107.9C13—C12—H12119.4
O1—C3—C2107.0 (3)C14—C13—C12118.0 (3)
O1—C3—H3A110.3C14—C13—C16121.3 (3)
C2—C3—H3A110.3C12—C13—C16120.7 (3)
O1—C3—H3B110.3C13—C14—C15121.2 (3)
C2—C3—H3B110.3C13—C14—H14119.4
H3A—C3—H3B108.6C15—C14—H14119.4
O1—C4—C9125.2 (3)C10—C15—C14119.9 (3)
O1—C4—C5114.5 (3)C10—C15—H15120.0
C9—C4—C5120.3 (3)C14—C15—H15120.0
C6—C5—C4120.1 (3)C13—C16—H16A109.5
C6—C5—H5120.0C13—C16—H16B109.5
C4—C5—H5120.0H16A—C16—H16B109.5
C5—C6—C7120.3 (3)C13—C16—H16C109.5
C5—C6—H6119.8H16A—C16—H16C109.5
C7—C6—H6119.8H16B—C16—H16C109.5
C8—C7—C6118.5 (3)N2—N1—C7112.6 (3)
C8—C7—N1116.2 (3)N1—N2—C10113.7 (3)
C6—C7—N1125.2 (3)C4—O1—C3117.6 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H17BrN2O
Mr333.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)26.530 (15), 4.785 (2), 11.810 (7)
β (°) 102.85 (2)
V3)1461.8 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.81
Crystal size (mm)0.24 × 0.23 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.553, 0.574
No. of measured, independent and
observed [I > 2σ(I)] reflections
13590, 3337, 1860
Rint0.080
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.180, 1.01
No. of reflections3337
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.59

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBadawi, A. M., Azzam, E. M. S. & Morsy, S. M. (2006). Bioorg. Med. Chem. 14, 8661–8665.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPetek, H., Erşahin, F., Albayrak, Ç., Ağar, E. & Şenel, İ. (2006). Acta Cryst. E62, o5874–o5875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds