organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Nitro­styr­yl)-N,N-di­phenyl­aniline

aDeparment of Chemistry, Anhui University, Hefei 230039, Peoples Republic of China, Key Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: jywu1957@163.com

(Received 13 May 2012; accepted 24 May 2012; online 31 May 2012)

In the triaryl­amine group of the title compound, C26H20N2O2, the N atom adopts an approximately trigonal–planar geometry, lying 0.046 (5) Å from the plane P defined by its three neighbouring C atoms; the benzene and two terminal phenyl rings are twisted by 37.4 (1), 31.4 (1) and 47.8 (1)°, respectively from plane P. In the trans-stilbene fragment, the two benzene rings form a dihedral angle of 31.3 (1)°. In the crystal, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into ribbons in [100].

Related literature

For a related structure, see: Yang et al. (2003[Yang, J.-S., Wang, C.-M., Hwang, C.-Y., Liau, K.-L. & Chiou, S.-Y. (2003). Photochem. Photobiol. Sci. 2, 1225-1231.]). For background to push–pull chromophores, see: Marder et al. (1991[Marder, S. R., Beratan, D. N. & Cheng, L.-T. (1991). Science, 252, 103-106.]); Reinhardt et al. (1998[Reinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G. & Bhatt, J. C. (1998). Chem. Mater. 10, 1863-1874.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20N2O2

  • Mr = 392.44

  • Monoclinic, P 21 /c

  • a = 8.4884 (3) Å

  • b = 8.9834 (3) Å

  • c = 27.0880 (8) Å

  • β = 96.500 (2)°

  • V = 2052.31 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.984

  • 7675 measured reflections

  • 3606 independent reflections

  • 2213 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.185

  • S = 1.04

  • 3606 reflections

  • 272 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.58 3.481 (4) 162
C12—H12⋯O2ii 0.93 2.56 3.308 (4) 138
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Push-pull chromophores are characterized by the conjugated linkage of an electron-donating group (D) and an electron-accepting group (A). Such molecules are potentially useful for nonlinear optical applications and many D-π-A type chromophores have been reported (Marder et al., 1991; Reinhardt et al., 1998). As a part of an ongoing study of such type chromophores, here we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related 4-(4-methoxystyryl)-N,N-diphenylaniline (Yang et al., 2003). The C = C double bond ( = 1.276 (4) Å) in the molecule adopts a trans-configuration. The dihedral angle between the benzene ring of the triarylamine group and another benzene ring linked by double bond is 31.34 (13) °. In the crystal, weak intermolecular C—H···O interactions (Table 1) link the molecules into ribbons in [100].

Related literature top

For a related structure, see: Yang et al. (2003). For background to push–pull chromophores, see: Marder et al. (1991); Reinhardt et al. (1998).

Experimental top

2.73 g (10 mmol) of diethyl(4-nitrophenyl)methylphosphonate were put into a dry mortar, then 2.24 g (20 mmol) t-BuOK were placed into powder, a modicum of 18-crown-6 and 2.72 g (10 mmol) 4-(diphenylamino)benzaldehyde were adde and vigorously grinded. The mixture was monitored by TLC. After completion of the reaction the mixture was dissolved in 150 ml CH2Cl2 and washed with Di-water, the organic layer separated and dried over MgSO4,filterd and solvent removed in vacuo. The product was recrystallized from anhydrous ethanol, to give 2.12 g red acicular crystal. Yield, 54.1%. 1H NMR: (400 Hz, CDCl3), d(p.p.m.): 8.20(d, 2H, J = 8.4 Hz) 7.60(d, 2H, J=8.8 Hz) 7.40(d, 2H, J=8.8 Hz) 7.30–7.26(m, 4H) 7.19(s, 1H) 7.13(d, 4H, J=8.0) 7.09–7.03(m, 4H) 6.99(s, 1H) 13 C NMR (125 MHz, CDCl3) d (p.p.m.) 148.7, 147.8, 147.4, 146.5, 145.0, 144.5, 133.5, 133.0, 130.0 129.7, 129.5, 129.4, 128.2, 126.7, 126.5, 125.1, 124.8, 124.3, 123.8 123.6, 122.8, 122.3. IR (KBr, cm-1): 3029 1585 1514 1485 1335 1283 1175 1111 970 841 758 694. MS: m/z (%) = 504.20 (100)

Refinement top

All hydrogen atoms were placed in geometrically idealized positions (C—H = 0.93 Å), and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
4-(4-Nitrostyryl)-N,N-diphenylaniline top
Crystal data top
C26H20N2O2F(000) = 824
Mr = 392.44Dx = 1.270 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1419 reflections
a = 8.4884 (3) Åθ = 2.4–21.1°
b = 8.9834 (3) ŵ = 0.08 mm1
c = 27.0880 (8) ÅT = 298 K
β = 96.500 (2)°Red, block
V = 2052.31 (12) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube2213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 810
Tmin = 0.976, Tmax = 0.984k = 107
7675 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.0857P)2 + 0.4264P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3606 reflectionsΔρmax = 0.44 e Å3
272 parametersΔρmin = 0.20 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (17)
Crystal data top
C26H20N2O2V = 2052.31 (12) Å3
Mr = 392.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4884 (3) ŵ = 0.08 mm1
b = 8.9834 (3) ÅT = 298 K
c = 27.0880 (8) Å0.30 × 0.20 × 0.20 mm
β = 96.500 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2213 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.984Rint = 0.026
7675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0577 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
3606 reflectionsΔρmin = 0.20 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1022 (4)0.1217 (4)1.06736 (14)0.1466 (14)
O20.2236 (5)0.0213 (4)1.02338 (11)0.1424 (13)
N10.4781 (2)1.2271 (2)0.81947 (8)0.0608 (6)
N20.1826 (4)0.1004 (4)1.03580 (13)0.0983 (10)
C10.3616 (3)1.3187 (3)0.78910 (9)0.0553 (7)
C20.3483 (3)1.4677 (3)0.79922 (10)0.0654 (7)
H20.41281.51060.82540.078*
C30.2364 (4)1.5551 (4)0.76972 (13)0.0805 (9)
H30.22891.65590.77700.097*
C40.1355 (4)1.4960 (5)0.72958 (14)0.0883 (10)
H40.06311.55660.71070.106*
C50.1463 (4)1.3478 (4)0.71906 (13)0.0938 (11)
H50.08061.30530.69300.113*
C60.2598 (4)1.2596 (3)0.74862 (11)0.0808 (9)
H60.26771.15900.74110.097*
C70.6385 (3)1.2784 (3)0.83323 (9)0.0520 (6)
C80.7061 (3)1.3620 (3)0.80040 (11)0.0685 (8)
H80.65191.38620.76970.082*
C90.8628 (4)1.4119 (3)0.81420 (15)0.0855 (10)
H90.90971.47010.79150.103*
C100.9527 (4)1.3801 (3)0.85959 (15)0.0848 (10)
H101.05511.41690.86670.102*
C110.8878 (4)1.2964 (3)0.89204 (12)0.0769 (8)
H110.94411.27120.92240.092*
C120.7319 (3)1.2467 (3)0.87945 (10)0.0638 (7)
H120.68611.18940.90260.077*
C130.4293 (3)1.0942 (3)0.83959 (9)0.0550 (7)
C140.2812 (3)1.0854 (3)0.85408 (10)0.0634 (7)
H140.21011.16380.84790.076*
C150.2386 (4)0.9612 (3)0.87764 (11)0.0701 (8)
H150.13750.95670.88770.084*
C160.3393 (3)0.8402 (3)0.88742 (10)0.0664 (7)
C170.4834 (3)0.8447 (3)0.87023 (11)0.0679 (7)
H170.55120.76340.87460.081*
C180.5286 (3)0.9702 (3)0.84636 (11)0.0667 (7)
H180.62720.97250.83450.080*
C190.2936 (4)0.7155 (3)0.91720 (11)0.0761 (8)
H190.19500.72390.92880.091*
C200.3702 (4)0.5964 (3)0.92954 (11)0.0729 (8)
H200.46870.58730.91800.088*
C210.3225 (3)0.4725 (3)0.95959 (10)0.0640 (7)
C220.2273 (3)0.4916 (3)0.99516 (12)0.0730 (8)
H220.19080.58611.00210.088*
C230.1839 (3)0.3702 (4)1.02138 (12)0.0793 (9)
H230.11890.38301.04650.095*
C240.2349 (3)0.2320 (3)1.01095 (11)0.0691 (8)
C250.3328 (4)0.2112 (3)0.97748 (11)0.0768 (9)
H250.37090.11690.97110.092*
C260.3760 (4)0.3325 (3)0.95259 (11)0.0752 (8)
H260.44690.31900.92920.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.102 (2)0.178 (3)0.165 (3)0.0168 (19)0.041 (2)0.086 (2)
O20.225 (4)0.0826 (19)0.114 (2)0.039 (2)0.005 (2)0.0338 (17)
N10.0531 (13)0.0507 (13)0.0774 (15)0.0088 (10)0.0022 (11)0.0142 (11)
N20.093 (2)0.103 (3)0.093 (2)0.029 (2)0.0151 (18)0.038 (2)
C10.0514 (15)0.0541 (16)0.0602 (15)0.0067 (12)0.0048 (12)0.0089 (12)
C20.0701 (18)0.0632 (19)0.0639 (17)0.0010 (14)0.0119 (14)0.0016 (14)
C30.077 (2)0.076 (2)0.093 (2)0.0177 (17)0.0258 (19)0.0167 (18)
C40.0605 (19)0.107 (3)0.098 (3)0.0091 (18)0.0143 (18)0.046 (2)
C50.079 (2)0.110 (3)0.086 (2)0.025 (2)0.0210 (18)0.025 (2)
C60.089 (2)0.0646 (19)0.084 (2)0.0166 (16)0.0122 (18)0.0074 (16)
C70.0505 (14)0.0440 (14)0.0622 (15)0.0018 (11)0.0101 (12)0.0037 (12)
C80.0616 (17)0.0667 (18)0.0794 (19)0.0054 (14)0.0177 (15)0.0196 (15)
C90.0581 (18)0.072 (2)0.131 (3)0.0009 (15)0.031 (2)0.0299 (19)
C100.0476 (17)0.069 (2)0.136 (3)0.0007 (15)0.0042 (19)0.010 (2)
C110.0645 (19)0.076 (2)0.086 (2)0.0012 (16)0.0068 (16)0.0027 (17)
C120.0594 (16)0.0646 (17)0.0673 (17)0.0032 (13)0.0075 (13)0.0034 (13)
C130.0568 (16)0.0473 (15)0.0599 (15)0.0101 (12)0.0029 (12)0.0041 (11)
C140.0604 (17)0.0576 (17)0.0724 (18)0.0102 (13)0.0086 (14)0.0010 (13)
C150.0655 (18)0.0692 (19)0.0760 (19)0.0166 (15)0.0093 (15)0.0024 (15)
C160.0727 (16)0.0654 (16)0.0598 (16)0.0262 (15)0.0022 (13)0.0002 (12)
C170.0739 (17)0.0495 (16)0.0790 (19)0.0023 (13)0.0024 (14)0.0040 (13)
C180.0679 (18)0.0557 (17)0.0778 (18)0.0030 (14)0.0136 (14)0.0061 (14)
C190.078 (2)0.0675 (16)0.080 (2)0.0169 (13)0.0011 (15)0.0085 (14)
C200.081 (2)0.0664 (16)0.0682 (18)0.0164 (13)0.0052 (15)0.0025 (13)
C210.0659 (17)0.0672 (17)0.0566 (16)0.0140 (14)0.0033 (14)0.0054 (12)
C220.0665 (18)0.0613 (18)0.089 (2)0.0021 (14)0.0002 (16)0.0082 (16)
C230.0585 (18)0.094 (3)0.085 (2)0.0007 (17)0.0104 (16)0.0212 (19)
C240.0645 (18)0.072 (2)0.0670 (18)0.0163 (16)0.0075 (15)0.0249 (15)
C250.103 (2)0.0576 (18)0.0674 (18)0.0071 (16)0.0012 (18)0.0044 (15)
C260.095 (2)0.068 (2)0.0633 (17)0.0131 (17)0.0124 (16)0.0006 (15)
Geometric parameters (Å, º) top
O1—N21.168 (4)C12—H120.9300
O2—N21.207 (4)C13—C141.361 (4)
N1—C131.395 (3)C13—C181.397 (4)
N1—C71.445 (3)C14—C151.355 (4)
N1—C11.465 (3)C14—H140.9300
N2—C241.454 (4)C15—C161.390 (4)
C1—C21.373 (4)C15—H150.9300
C1—C61.420 (4)C16—C171.358 (4)
C2—C31.409 (4)C16—C191.458 (4)
C2—H20.9300C17—C181.375 (4)
C3—C41.410 (5)C17—H170.9300
C3—H30.9300C18—H180.9300
C4—C51.367 (5)C19—C201.276 (4)
C4—H40.9300C19—H190.9300
C5—C61.422 (4)C20—C211.463 (4)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—C221.337 (4)
C7—C81.342 (3)C21—C261.358 (4)
C7—C121.433 (4)C22—C231.374 (4)
C8—C91.413 (4)C22—H220.9300
C8—H80.9300C23—C241.356 (4)
C9—C101.401 (5)C23—H230.9300
C9—H90.9300C24—C251.310 (4)
C10—C111.323 (4)C25—C261.354 (4)
C10—H100.9300C25—H250.9300
C11—C121.402 (4)C26—H260.9300
C11—H110.9300
C13—N1—C7119.0 (2)C14—C13—N1119.2 (2)
C13—N1—C1119.2 (2)C14—C13—C18118.6 (2)
C7—N1—C1121.44 (19)N1—C13—C18122.2 (2)
O1—N2—O2124.3 (4)C15—C14—C13119.2 (3)
O1—N2—C24116.1 (4)C15—C14—H14120.4
O2—N2—C24119.6 (4)C13—C14—H14120.4
C2—C1—C6117.5 (3)C14—C15—C16122.9 (3)
C2—C1—N1120.0 (2)C14—C15—H15118.6
C6—C1—N1122.5 (2)C16—C15—H15118.6
C1—C2—C3119.7 (3)C17—C16—C15118.0 (3)
C1—C2—H2120.1C17—C16—C19121.3 (3)
C3—C2—H2120.1C15—C16—C19120.6 (3)
C2—C3—C4122.6 (3)C16—C17—C18119.7 (3)
C2—C3—H3118.7C16—C17—H17120.1
C4—C3—H3118.7C18—C17—H17120.1
C5—C4—C3118.6 (3)C17—C18—C13121.3 (3)
C5—C4—H4120.7C17—C18—H18119.4
C3—C4—H4120.7C13—C18—H18119.4
C4—C5—C6118.8 (3)C20—C19—C16129.0 (3)
C4—C5—H5120.6C20—C19—H19115.5
C6—C5—H5120.6C16—C19—H19115.5
C1—C6—C5122.7 (3)C19—C20—C21128.2 (3)
C1—C6—H6118.6C19—C20—H20115.9
C5—C6—H6118.6C21—C20—H20115.9
C8—C7—C12117.0 (2)C22—C21—C26117.3 (3)
C8—C7—N1118.0 (2)C22—C21—C20122.1 (3)
C12—C7—N1125.0 (2)C26—C21—C20120.6 (3)
C7—C8—C9117.6 (3)C21—C22—C23119.4 (3)
C7—C8—H8121.2C21—C22—H22120.3
C9—C8—H8121.2C23—C22—H22120.3
C10—C9—C8124.7 (3)C24—C23—C22120.6 (3)
C10—C9—H9117.6C24—C23—H23119.7
C8—C9—H9117.6C22—C23—H23119.7
C11—C10—C9118.2 (3)C25—C24—C23121.2 (3)
C11—C10—H10120.9C25—C24—N2117.1 (3)
C9—C10—H10120.9C23—C24—N2121.8 (3)
C10—C11—C12118.2 (3)C24—C25—C26117.3 (3)
C10—C11—H11120.9C24—C25—H25121.4
C12—C11—H11120.9C26—C25—H25121.4
C11—C12—C7124.3 (3)C25—C26—C21124.2 (3)
C11—C12—H12117.9C25—C26—H26117.9
C7—C12—H12117.9C21—C26—H26117.9
C13—N1—C1—C2129.1 (3)C18—C13—C14—C154.5 (4)
C7—N1—C1—C244.5 (3)C13—C14—C15—C160.7 (4)
C13—N1—C1—C651.1 (3)C14—C15—C16—C173.4 (4)
C7—N1—C1—C6135.3 (3)C14—C15—C16—C19173.8 (3)
C6—C1—C2—C30.0 (4)C15—C16—C17—C183.5 (4)
N1—C1—C2—C3179.7 (2)C19—C16—C17—C18173.8 (3)
C1—C2—C3—C40.1 (4)C16—C17—C18—C130.4 (4)
C2—C3—C4—C50.3 (5)C14—C13—C18—C174.5 (4)
C3—C4—C5—C60.6 (5)N1—C13—C18—C17174.2 (2)
C2—C1—C6—C50.4 (4)C17—C16—C19—C203.1 (5)
N1—C1—C6—C5179.9 (3)C15—C16—C19—C20179.7 (3)
C4—C5—C6—C10.7 (5)C16—C19—C20—C21179.8 (3)
C13—N1—C7—C8151.6 (2)C19—C20—C21—C2229.6 (5)
C1—N1—C7—C834.8 (3)C19—C20—C21—C26151.3 (3)
C13—N1—C7—C1228.3 (4)C26—C21—C22—C232.3 (4)
C1—N1—C7—C12145.3 (2)C20—C21—C22—C23178.6 (3)
C12—C7—C8—C90.2 (4)C21—C22—C23—C240.9 (4)
N1—C7—C8—C9179.9 (2)C22—C23—C24—C253.4 (5)
C7—C8—C9—C100.2 (5)C22—C23—C24—N2175.9 (3)
C8—C9—C10—C110.6 (5)O1—N2—C24—C25176.1 (3)
C9—C10—C11—C121.2 (5)O2—N2—C24—C253.6 (5)
C10—C11—C12—C71.1 (4)O1—N2—C24—C234.6 (5)
C8—C7—C12—C110.4 (4)O2—N2—C24—C23175.7 (3)
N1—C7—C12—C11179.5 (2)C23—C24—C25—C262.3 (5)
C7—N1—C13—C14139.6 (3)N2—C24—C25—C26177.0 (3)
C1—N1—C13—C1434.2 (3)C24—C25—C26—C211.2 (5)
C7—N1—C13—C1839.1 (4)C22—C21—C26—C253.5 (4)
C1—N1—C13—C18147.1 (3)C20—C21—C26—C25177.4 (3)
N1—C13—C14—C15174.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.583.481 (4)162
C12—H12···O2ii0.932.563.308 (4)138
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC26H20N2O2
Mr392.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.4884 (3), 8.9834 (3), 27.0880 (8)
β (°) 96.500 (2)
V3)2052.31 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7675, 3606, 2213
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.185, 1.04
No. of reflections3606
No. of parameters272
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.20

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.583.481 (4)162.1
C12—H12···O2ii0.932.563.308 (4)138.1
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 21071001 and 51142011), the Education Committee of Anhui Province (grant No. KJ2010A030) and the Natural Science Foundation of Anhui University (grant No. yqh100053).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMarder, S. R., Beratan, D. N. & Cheng, L.-T. (1991). Science, 252, 103–106.  CrossRef PubMed CAS Web of Science Google Scholar
First citationReinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G. & Bhatt, J. C. (1998). Chem. Mater. 10, 1863–1874.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J.-S., Wang, C.-M., Hwang, C.-Y., Liau, K.-L. & Chiou, S.-Y. (2003). Photochem. Photobiol. Sci. 2, 1225–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds