organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Hy­dr­oxy­benzyl­­idene)-4-methyl­benzohydrazide

aHebei Changshan Biochemical Pharmaceutical Co. Ltd, Shijiazhuang Hebei 050800, People's Republic of China, bDepartment of Economics and Management, Hebei North University, Zhangjiakou Hebei 075000, People's Republic of China, and cHebei Key Laboratory of Bioinorganic Chemistry, College of Sciences, Agricultural University of Hebei, Baoding 071001, People's Republic of China
*Correspondence e-mail: majingjun71@yahoo.cn

(Received 14 May 2012; accepted 15 May 2012; online 19 May 2012)

The title compound, C15H14N2O2, was obtained from the reaction of 3-hy­droxy­benzaldhyde and 4-methyl­benzo­hydrazide in methanol. In the mol­ecule, the benzene rings form a dihedral angle of 2.9 (3)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (101). The crystal packing also exhibits ππ inter­actions between the aromatic rings [centroid–centroid distance = 3.686 (4) Å].

Related literature

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011[El-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & El Tahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416-3424.]); Horiuchi et al. (2009[Horiuchi, T., Nagata, M., KitagawaB, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850-7860.]). For benzohydrazide coordination compounds, see: El-Dissouky et al. (2010[El-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330-345.]); Zhang et al. (2010[Zhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the crystal structures of similar compounds, see: Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.]); Liu et al. (2011[Liu, W.-H., Song, S.-J. & Ma, J.-J. (2011). Acta Cryst. E67, o2198.]); Zhang et al. (2012[Zhang, Y., Liu, M. & Ma, J.-J. (2012). Acta Cryst. E68, o679-o680.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.28

  • Monoclinic, P 21 /n

  • a = 11.5203 (14) Å

  • b = 8.7228 (12) Å

  • c = 13.5793 (19) Å

  • β = 106.889 (2)°

  • V = 1305.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.987

  • 5767 measured reflections

  • 2193 independent reflections

  • 1013 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.160

  • S = 0.96

  • 2193 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 2.10 (2) 2.926 (4) 152 (3)
O2—H2B⋯O1ii 0.82 1.91 2.713 (3) 166
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzohydrazide compounds are well known for their biological activities (El-Sayed et al., 2011; Horiuchi et al., 2009). In addition, benzohydrazide compounds have also been used as versatile ligands in coordination chemistry (El-Dissouky et al., 2010, Zhang et al., 2010). As a contribution to a structural study on hydrazone compounds, we present here the crystal structure of the title compound (I) obtained in the reaction of 3-hydroxybenzaldehyde with 4-methylbenzohydrazide in methanol.

In (I) (Fig. 1), two benzene rings form a dihedral angle of 2.9 (3)°. The bond lengths and angles are within normal ranges (Allen et al., 1987), and agree well with those reported for related compounds (Suleiman Gwaram et al., 2010; Liu et al., 2011; Zhang et al., 2012). Intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to (101). The crystal packing exhibits ππ interactions between the aromatic rings [centroid-centroid distance = 3.686 (4) Å].

Related literature top

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011); Horiuchi et al. (2009). For benzohydrazide coordination compounds, see: El-Dissouky et al. (2010); Zhang et al. (2010). For standard bond lengths, see: Allen et al. (1987). For the crystal structures of similar compounds, see: Suleiman Gwaram et al. (2010); Liu et al. (2011); Zhang et al. (2012).

Experimental top

To a methanol solution (20 ml) of 3-hydroxybenzaldehyde (0.1 mmol, 12.2 mg) and 4-methylbenzohydrazide (0.1 mmol, 15.0 mg), a few drops of acetic acid were added. The mixture was refluxed for 1 h and then cooled to room temperature. The white crystalline solid was collected by filtration, washed with cold methanol and dried in air. Single crystals, suitable for X-ray diffraction, were obtained by slow evaporation of a methanol solution of the product in air.

Refinement top

The amino H-atom was located in a difference Fourier map and was refined with a distance restraint, N—H = 0.90 (1) Å. The hydroxy and C-bound H atoms were positioned geometrically (O—H 0.82 Å; C—H = 0.93 - 0.96 Å), and refined using a riding model, with Uiso(H) = 1.2–1.5 Ueq(C, O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the numbering scheme and displacement ellipsoids drawn at the 30% probability level.
N'-(3-Hydroxybenzylidene)-4-methylbenzohydrazide top
Crystal data top
C15H14N2O2F(000) = 536
Mr = 254.28Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.5203 (14) ÅCell parameters from 1383 reflections
b = 8.7228 (12) Åθ = 2.7–27.8°
c = 13.5793 (19) ŵ = 0.09 mm1
β = 106.889 (2)°T = 298 K
V = 1305.7 (3) Å3Prism, colourless
Z = 40.17 × 0.15 × 0.15 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2193 independent reflections
Radiation source: fine-focus sealed tube1013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω scanθmax = 25.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1013
Tmin = 0.985, Tmax = 0.987k = 1010
5767 measured reflectionsl = 1611
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0672P)2]
where P = (Fo2 + 2Fc2)/3
2193 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C15H14N2O2V = 1305.7 (3) Å3
Mr = 254.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5203 (14) ŵ = 0.09 mm1
b = 8.7228 (12) ÅT = 298 K
c = 13.5793 (19) Å0.17 × 0.15 × 0.15 mm
β = 106.889 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1013 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.987Rint = 0.070
5767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.19 e Å3
2193 reflectionsΔρmin = 0.19 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0696 (3)0.2934 (3)1.0157 (2)0.0449 (8)
N20.0285 (3)0.3619 (3)0.9196 (2)0.0443 (8)
O10.2096 (3)0.4735 (3)0.93581 (19)0.0626 (8)
O20.2664 (2)0.0955 (3)1.37553 (19)0.0625 (8)
H2B0.27080.04411.42710.094*
C10.0236 (3)0.1217 (4)1.1365 (3)0.0392 (9)
C20.1324 (3)0.1476 (4)1.2118 (3)0.0434 (10)
H2A0.18690.21981.20120.052*
C30.1591 (4)0.0654 (4)1.3023 (3)0.0437 (10)
C40.0790 (4)0.0422 (4)1.3187 (3)0.0509 (10)
H40.09790.09781.37970.061*
C50.0290 (4)0.0666 (4)1.2441 (3)0.0565 (11)
H50.08330.13901.25480.068*
C60.0575 (3)0.0154 (4)1.1533 (3)0.0506 (10)
H60.13120.00091.10340.061*
C70.0067 (3)0.2051 (4)1.0389 (3)0.0451 (10)
H70.08350.19340.99270.054*
C80.1044 (4)0.4477 (4)0.8839 (3)0.0427 (10)
C90.0544 (4)0.5105 (3)0.7790 (3)0.0410 (9)
C100.1221 (4)0.6163 (4)0.7431 (3)0.0578 (11)
H100.19890.64330.78440.069*
C110.0779 (5)0.6825 (4)0.6472 (3)0.0640 (12)
H110.12590.75240.62510.077*
C120.0351 (4)0.6480 (4)0.5838 (3)0.0557 (11)
C130.1021 (4)0.5414 (4)0.6183 (3)0.0566 (11)
H130.17840.51410.57620.068*
C140.0587 (4)0.4735 (4)0.7144 (3)0.0520 (11)
H140.10640.40210.73560.062*
C150.0846 (4)0.7240 (5)0.4805 (3)0.0806 (14)
H15A0.16810.75080.47040.121*
H15B0.07870.65470.42730.121*
H15C0.03870.81500.47800.121*
H20.0506 (13)0.367 (4)0.884 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.052 (2)0.0353 (16)0.0438 (19)0.0031 (16)0.0086 (17)0.0024 (14)
N20.050 (2)0.0366 (16)0.0432 (19)0.0005 (17)0.0079 (17)0.0067 (15)
O10.059 (2)0.0708 (19)0.0540 (17)0.0164 (15)0.0102 (16)0.0015 (14)
O20.057 (2)0.0703 (19)0.0532 (17)0.0046 (15)0.0047 (16)0.0127 (14)
C10.045 (3)0.0292 (18)0.042 (2)0.0046 (17)0.010 (2)0.0003 (17)
C20.051 (3)0.0307 (19)0.051 (2)0.0002 (17)0.018 (2)0.0006 (18)
C30.048 (3)0.038 (2)0.044 (2)0.0030 (19)0.012 (2)0.0028 (18)
C40.063 (3)0.038 (2)0.051 (2)0.000 (2)0.017 (2)0.0076 (19)
C50.071 (3)0.039 (2)0.062 (3)0.015 (2)0.023 (3)0.002 (2)
C60.054 (3)0.038 (2)0.055 (3)0.0064 (19)0.008 (2)0.0009 (19)
C70.051 (3)0.0312 (19)0.049 (2)0.0020 (19)0.007 (2)0.0005 (18)
C80.052 (3)0.0309 (19)0.046 (2)0.0014 (19)0.015 (2)0.0078 (18)
C90.053 (3)0.0257 (18)0.046 (2)0.0005 (18)0.018 (2)0.0020 (17)
C100.062 (3)0.052 (2)0.061 (3)0.011 (2)0.021 (2)0.003 (2)
C110.091 (4)0.046 (2)0.068 (3)0.011 (2)0.043 (3)0.010 (2)
C120.076 (3)0.038 (2)0.061 (3)0.018 (2)0.033 (3)0.005 (2)
C130.062 (3)0.052 (2)0.054 (3)0.002 (2)0.015 (2)0.005 (2)
C140.063 (3)0.040 (2)0.054 (3)0.003 (2)0.018 (2)0.0041 (19)
C150.114 (4)0.066 (3)0.068 (3)0.029 (3)0.037 (3)0.026 (2)
Geometric parameters (Å, º) top
N1—C71.276 (4)C6—H60.9300
N1—N21.388 (4)C7—H70.9300
N2—C81.344 (4)C8—C91.478 (5)
N2—H20.898 (10)C9—C141.381 (4)
O1—C81.233 (4)C9—C101.385 (5)
O2—C31.368 (4)C10—C111.379 (5)
O2—H2B0.8200C10—H100.9300
C1—C61.380 (4)C11—C121.369 (5)
C1—C21.386 (4)C11—H110.9300
C1—C71.463 (4)C12—C131.374 (5)
C2—C31.378 (4)C12—C151.506 (5)
C2—H2A0.9300C13—C141.388 (4)
C3—C41.379 (4)C13—H130.9300
C4—C51.374 (5)C14—H140.9300
C4—H40.9300C15—H15A0.9600
C5—C61.381 (5)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C7—N1—N2114.9 (3)O1—C8—C9121.8 (4)
C8—N2—N1119.9 (3)N2—C8—C9116.2 (4)
C8—N2—H2117 (3)C14—C9—C10117.1 (3)
N1—N2—H2122 (3)C14—C9—C8123.8 (3)
C3—O2—H2B109.5C10—C9—C8119.0 (4)
C6—C1—C2119.9 (3)C11—C10—C9121.3 (4)
C6—C1—C7119.2 (4)C11—C10—H10119.3
C2—C1—C7120.9 (3)C9—C10—H10119.3
C3—C2—C1119.5 (3)C12—C11—C10121.6 (4)
C3—C2—H2A120.2C12—C11—H11119.2
C1—C2—H2A120.2C10—C11—H11119.2
O2—C3—C2118.0 (3)C11—C12—C13117.4 (4)
O2—C3—C4121.3 (3)C11—C12—C15121.5 (4)
C2—C3—C4120.7 (4)C13—C12—C15121.1 (4)
C5—C4—C3119.5 (4)C12—C13—C14121.6 (4)
C5—C4—H4120.3C12—C13—H13119.2
C3—C4—H4120.3C14—C13—H13119.2
C4—C5—C6120.5 (4)C9—C14—C13120.9 (4)
C4—C5—H5119.7C9—C14—H14119.6
C6—C5—H5119.7C13—C14—H14119.6
C1—C6—C5119.9 (4)C12—C15—H15A109.5
C1—C6—H6120.1C12—C15—H15B109.5
C5—C6—H6120.1H15A—C15—H15B109.5
N1—C7—C1121.6 (4)C12—C15—H15C109.5
N1—C7—H7119.2H15A—C15—H15C109.5
C1—C7—H7119.2H15B—C15—H15C109.5
O1—C8—N2122.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.10 (2)2.926 (4)152 (3)
O2—H2B···O1ii0.821.912.713 (3)166
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.5203 (14), 8.7228 (12), 13.5793 (19)
β (°) 106.889 (2)
V3)1305.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5767, 2193, 1013
Rint0.070
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.160, 0.96
No. of reflections2193
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.898 (10)2.10 (2)2.926 (4)152 (3)
O2—H2B···O1ii0.821.912.713 (3)165.5
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y1/2, z+5/2.
 

Acknowledgements

This project was sponsored by the Natural Development Foundation of Hebei Province (grant No. B2011204051), the Development Foundation of the Department of Education of Hebei Province (grant No. 2010137) and the Research Development Foundation of the Agricultural University of Hebei.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330–345.  Web of Science CrossRef CAS Google Scholar
First citationEl-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & El Tahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416–3424.  Web of Science CAS PubMed Google Scholar
First citationHoriuchi, T., Nagata, M., KitagawaB, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850–7860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, W.-H., Song, S.-J. & Ma, J.-J. (2011). Acta Cryst. E67, o2198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y., Liu, M. & Ma, J.-J. (2012). Acta Cryst. E68, o679–o680.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds