organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-Alanine–(S)-2-phen­­oxy­propionic acid (1/1)

aDepartment of Science Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
*Correspondence e-mail: kamimo@hiroshima-u.ac.jp

(Received 4 April 2012; accepted 8 May 2012; online 16 May 2012)

In the title co-crystal, C3H7NO2·C9H10O3, the (S)-alanine mol­ecule exists in the zwitterionic form stabilized by two pairs of N+—H⋯O hydrogen bonds and an electrostatic inter­action between the ammonium center and the carboxyl­ate anion, forming a sheet along the ab plane. The carboxyl group of the (S)-2-phen­oxy­propionic acid mol­ecule is connected to the top and bottom of the sheet via N+—H⋯O=C and O—H⋯O [R22(7) graph set] hydrogen bonds, giving an (S,S)-homochiral layer, in which both methyl groups of (S)-alanine and the phenyl rings of (S)-2-phen­oxy­propionic acid are oriented in the same direction along the b axis.

Related literature

For the use of a chiral resolution agents, see: Hasegawa et al. (1998[Hasegawa, G., Miura, T., Watadani, T. & Hong, N. (1998). J. Synth. Org. Chem. Jpn, 56, 773-780.]). For the crystal structure of enanti­omeric and racemic 2-phen­oxy­propionic acid, see: Sørensen & Larsen (2003[Sørensen, H. O. & Larsen, S. (2003). Acta Cryst. B59, 132-140.]). For the crystal structure of (S)-alanine–(R)-2-phen­oxy­propionic acid, see: Takahashi & Fujii (2004[Takahashi, Y. & Fujii, I. (2004). Anal. Sci. 20, x77-x78.]).

[Scheme 1]

Experimental

Crystal data
  • C3H7NO2·C9H10O3

  • Mr = 255.27

  • Monoclinic, P 21

  • a = 5.227 (5) Å

  • b = 7.364 (5) Å

  • c = 17.493 (5) Å

  • β = 95.232 (5)°

  • V = 670.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.7 × 0.5 × 0.3 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 3872 measured reflections

  • 2742 independent reflections

  • 2698 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.081

  • S = 1.06

  • 2742 reflections

  • 171 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 930 Friedel pairs

  • Flack parameter: −0.4 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.89 2.05 2.916 (3) 165
N1—H1B⋯O5ii 0.89 1.94 2.822 (3) 170
N1—H1C⋯O2i 0.89 1.97 2.863 (3) 177
O1—H1O⋯O4ii 1.03 (2) 1.50 (2) 2.521 (3) 169 (2)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chiral 2-phenoxypropionic acid (PPA) has been known as a good and accessible optical resolving agent for amines (Hasegawa et al., 1998). The crystal structure of optical pure and racemic PPA has been reported (Sørensen & Larsen, 2003). And the crystal structure of co-crystal of (R)-PPA with (S)-alanine has been known (Takahashi & Fujii, 2004), but no results have ever reported on the details of the chiral discrimination between PPA and (S)-alanine. In this work, we present the crystal structure of the co-crystal of (S)-PPA with (S)-alanine (I) (Fig. 1). The co-crystal I crystallizes in the monoclinic system of space group P21. (S)-Alanine assembles a chiral two-dimensional sheet along the ab plane, in which the ammonium cation is strongly held with the carboxylate anion by two hydrogen bonds and one electrostatic interaction. The N(1)+—H···O(5)- hydrogen bonds are 2.822 (2) Å and 2.916 (2) Å. The interatomic distance between ammonium center N(1)+ and carboxylate O(4)- is 2.960 (2) Å. The carboxyl C=O of PPA is connected to the ammonium N+—H of (S)-alanine, and the O—H of PPA to the carboxylate O- of (S)-alanine. The N(1)+—H···O(2) and O(1)—H···O(4)- distances are 2.863 (2) Å and 2.521 (2) Å, respectively. The phenyl ring of PPA is oriented in the same direction of the methyl group of (S)-alanine of chiral two-dimensional sheet, yielding a (S,S)-homochiral layer (Fig. 2). On the basis of this finding, the development of optical resolution of amino acid using PPA as an optical resolving agent is under investigation.

Related literature top

For the use of a chiral resolution agents, see: Hasegawa et al. (1998). For the crystal structure of enantiomeric and racemic 2-phenoxypropionic acid, see: Sørensen & Larsen (2003). For the crystal structure of (S)-alanine–(R)-2-phenoxypropionic acid, see: Takahashi & Fujii (2004).

Experimental top

All reagents were commercially available from WAKO Co. and used without purification.(S)-2-Phenoxypropionic acid (1.66 g, 10 mmol) and (S)-alanine (0.89 g, 10 mmol) were dissolved in a water/ethanol solution (10 ml, 1:1 v/v). The solution was refluxed for 10 min, cooled to room temperature, and then kept in the refrigerator for three days. Colorless single crystals of I were obtained that were suitable for X-ray diffraction study.

Refinement top

All hydrogen atoms were found in a difference Fourier map. The hydrogen atom of carboxylic O(1)—H was refined isotropically. Other hydrogen atoms were refined as riding atoms with Caromatic—H = 0.93 Å, Cmethyl—H = 0.96 Å, and Cmethine—H = 0.98 Å, and with Uiso(H) = 1.5Ueq(Cmethyl) and Uiso(H) = 1.2Ueq(Caromatic, Cmethine), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The moleculer structure of the title compound I, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound I, viewed down the c axis (anisotropic displacement ellipsoids drawn at 50% probability level). Hydrogen bonds are drawn as dashed lines.
(S)-Alanine–(S)-2-phenoxypropionic acid (1/1) top
Crystal data top
C3H7NO2·C9H10O3F(000) = 272
Mr = 255.27Dx = 1.264 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 3229 reflections
a = 5.227 (5) Åθ = 2.3–28.5°
b = 7.364 (5) ŵ = 0.10 mm1
c = 17.493 (5) ÅT = 293 K
β = 95.232 (5)°Plate, colourless
V = 670.5 (8) Å30.7 × 0.5 × 0.3 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2698 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.5°, θmin = 2.3°
Detector resolution: 8.333 pixels mm-1h = 65
phi and ω scank = 99
3872 measured reflectionsl = 2123
2742 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.0566P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.17 e Å3
2742 reflectionsΔρmin = 0.13 e Å3
171 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0.160 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 930 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.4 (8)
Crystal data top
C3H7NO2·C9H10O3V = 670.5 (8) Å3
Mr = 255.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.227 (5) ŵ = 0.10 mm1
b = 7.364 (5) ÅT = 293 K
c = 17.493 (5) Å0.7 × 0.5 × 0.3 mm
β = 95.232 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2698 reflections with I > 2σ(I)
3872 measured reflectionsRint = 0.021
2742 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081Δρmax = 0.17 e Å3
S = 1.06Δρmin = 0.13 e Å3
2742 reflectionsAbsolute structure: Flack (1983), 930 Friedel pairs
171 parametersAbsolute structure parameter: 0.4 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2142 (2)0.91172 (17)0.27450 (7)0.0400 (3)
C20.2315 (3)0.9885 (2)0.19397 (8)0.0489 (3)
H20.41051.01770.18670.059*
C30.0685 (5)1.1604 (3)0.18625 (12)0.0785 (6)
H3A0.07951.21250.13630.118*
H3B0.13061.24610.22490.118*
H3C0.10711.13070.19260.118*
C40.2830 (3)0.7215 (2)0.12044 (7)0.0460 (3)
C50.5113 (3)0.6774 (3)0.16181 (8)0.0531 (3)
H50.57230.74660.20410.064*
C60.6486 (4)0.5288 (3)0.13974 (10)0.0688 (5)
H60.80150.49710.1680.083*
C70.5623 (4)0.4276 (3)0.07671 (12)0.0776 (6)
H70.65720.32860.06220.093*
C80.3355 (4)0.4726 (3)0.03498 (10)0.0708 (5)
H80.27730.40450.00790.085*
C90.1955 (3)0.6180 (2)0.05671 (8)0.0572 (4)
H90.04120.64770.02880.069*
C100.5537 (2)0.48177 (15)0.48456 (7)0.0332 (2)
C110.6485 (2)0.55376 (16)0.41011 (6)0.0337 (2)
H110.51190.62520.38230.04*
C120.7222 (4)0.3969 (2)0.35972 (9)0.0634 (4)
H12A0.78360.44410.31360.095*
H12B0.57460.32170.34680.095*
H12C0.8550.32610.3870.095*
N10.87704 (17)0.67096 (13)0.42842 (5)0.0322 (2)
H1A1.00140.60640.45370.048*
H1B0.8350.76360.45740.048*
H1C0.93170.71310.38510.048*
O10.3772 (2)0.98974 (17)0.32449 (6)0.0594 (3)
O20.0633 (2)0.79618 (16)0.28881 (5)0.0556 (3)
O30.1324 (2)0.86666 (16)0.13631 (5)0.0543 (3)
O40.72311 (17)0.45179 (16)0.53819 (5)0.0478 (2)
O50.32016 (16)0.45273 (15)0.48470 (6)0.0505 (3)
H1O0.348 (4)0.961 (4)0.3808 (13)0.090 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0455 (6)0.0409 (6)0.0347 (5)0.0023 (5)0.0092 (5)0.0001 (5)
C20.0571 (8)0.0507 (7)0.0405 (6)0.0004 (6)0.0123 (5)0.0086 (6)
C30.1025 (15)0.0610 (10)0.0741 (11)0.0222 (10)0.0188 (11)0.0239 (9)
C40.0487 (7)0.0597 (8)0.0306 (5)0.0026 (6)0.0090 (5)0.0051 (5)
C50.0523 (8)0.0688 (9)0.0387 (6)0.0046 (7)0.0064 (5)0.0053 (7)
C60.0626 (10)0.0849 (13)0.0604 (9)0.0170 (9)0.0138 (8)0.0034 (9)
C70.0906 (14)0.0761 (13)0.0697 (11)0.0092 (11)0.0269 (10)0.0153 (10)
C80.0871 (12)0.0749 (11)0.0527 (8)0.0212 (10)0.0184 (8)0.0165 (8)
C90.0613 (9)0.0745 (10)0.0355 (6)0.0130 (8)0.0029 (6)0.0007 (6)
C100.0292 (5)0.0326 (5)0.0387 (5)0.0014 (4)0.0078 (4)0.0082 (4)
C110.0309 (5)0.0378 (5)0.0321 (5)0.0065 (4)0.0009 (4)0.0051 (4)
C120.0933 (12)0.0534 (8)0.0457 (7)0.0229 (8)0.0179 (8)0.0170 (6)
N10.0313 (4)0.0328 (4)0.0335 (4)0.0041 (4)0.0076 (3)0.0015 (4)
O10.0697 (7)0.0685 (7)0.0406 (5)0.0264 (6)0.0089 (5)0.0073 (5)
O20.0657 (7)0.0647 (6)0.0372 (5)0.0238 (5)0.0086 (4)0.0042 (4)
O30.0563 (6)0.0709 (7)0.0348 (4)0.0084 (5)0.0010 (4)0.0028 (4)
O40.0364 (4)0.0718 (7)0.0358 (4)0.0054 (4)0.0060 (3)0.0173 (5)
O50.0288 (4)0.0571 (5)0.0663 (6)0.0030 (4)0.0082 (4)0.0240 (5)
Geometric parameters (Å, º) top
C1—O21.2019 (17)C7—H70.93
C1—O11.2980 (18)C8—C91.370 (3)
C1—C21.5281 (17)C8—H80.93
C2—O31.4124 (19)C9—H90.93
C2—C31.525 (3)C10—O51.2398 (18)
C2—H20.98C10—O41.2494 (16)
C3—H3A0.96C10—C111.5298 (15)
C3—H3B0.96C11—N11.4848 (17)
C3—H3C0.96C11—C121.524 (2)
C4—O31.3708 (19)C11—H110.98
C4—C51.377 (2)C12—H12A0.96
C4—C91.393 (2)C12—H12B0.96
C5—C61.383 (3)C12—H12C0.96
C5—H50.93N1—H1A0.89
C6—C71.373 (3)N1—H1B0.89
C6—H60.93N1—H1C0.89
C7—C81.375 (3)O1—H1O1.03 (2)
O2—C1—O1125.16 (12)C9—C8—H8120.1
O2—C1—C2123.29 (12)C7—C8—H8120.1
O1—C1—C2111.53 (12)C8—C9—C4120.31 (18)
O3—C2—C3107.36 (15)C8—C9—H9119.8
O3—C2—C1112.01 (12)C4—C9—H9119.8
C3—C2—C1108.02 (12)O5—C10—O4126.77 (11)
O3—C2—H2109.8O5—C10—C11117.18 (11)
C3—C2—H2109.8O4—C10—C11115.99 (10)
C1—C2—H2109.8N1—C11—C12108.94 (11)
C2—C3—H3A109.5N1—C11—C10109.53 (9)
C2—C3—H3B109.5C12—C11—C10110.39 (11)
H3A—C3—H3B109.5N1—C11—H11109.3
C2—C3—H3C109.5C12—C11—H11109.3
H3A—C3—H3C109.5C10—C11—H11109.3
H3B—C3—H3C109.5C11—C12—H12A109.5
O3—C4—C5124.33 (13)C11—C12—H12B109.5
O3—C4—C9115.83 (14)H12A—C12—H12B109.5
C5—C4—C9119.82 (15)C11—C12—H12C109.5
C4—C5—C6119.16 (15)H12A—C12—H12C109.5
C4—C5—H5120.4H12B—C12—H12C109.5
C6—C5—H5120.4C11—N1—H1A109.5
C7—C6—C5120.85 (19)C11—N1—H1B109.5
C7—C6—H6119.6H1A—N1—H1B109.5
C5—C6—H6119.6C11—N1—H1C109.5
C6—C7—C8120.01 (19)H1A—N1—H1C109.5
C6—C7—H7120H1B—N1—H1C109.5
C8—C7—H7120C1—O1—H1O114.0 (14)
C9—C8—C7119.85 (17)C4—O3—C2117.36 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.892.052.916 (3)165
N1—H1B···O5ii0.891.942.822 (3)170
N1—H1C···O2i0.891.972.863 (3)177
O1—H1O···O4ii1.03 (2)1.50 (2)2.521 (3)169 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC3H7NO2·C9H10O3
Mr255.27
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.227 (5), 7.364 (5), 17.493 (5)
β (°) 95.232 (5)
V3)670.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.7 × 0.5 × 0.3
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3872, 2742, 2698
Rint0.021
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.06
No. of reflections2742
No. of parameters171
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.13
Absolute structureFlack (1983), 930 Friedel pairs
Absolute structure parameter0.4 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.892.052.916 (3)165
N1—H1B···O5ii0.891.942.822 (3)170
N1—H1C···O2i0.891.972.863 (3)177
O1—H1O···O4ii1.03 (2)1.50 (2)2.521 (3)169 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

This work was partially supported by a Grant-in-Aid for Young Scientists (B) (23700956) and a Grant-in-Aid for Scientific Research (C) (22300272) from the Japan Society for the Promotion of Science (JSPS). The X-ray crystallographic analysis was performed at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHasegawa, G., Miura, T., Watadani, T. & Hong, N. (1998). J. Synth. Org. Chem. Jpn, 56, 773–780.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSørensen, H. O. & Larsen, S. (2003). Acta Cryst. B59, 132–140.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTakahashi, Y. & Fujii, I. (2004). Anal. Sci. 20, x77–x78.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds