organic compounds
(S)-Alanine–(S)-2-phenoxypropionic acid (1/1)
aDepartment of Science Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
*Correspondence e-mail: kamimo@hiroshima-u.ac.jp
In the title 3H7NO2·C9H10O3, the (S)-alanine molecule exists in the zwitterionic form stabilized by two pairs of N+—H⋯O− hydrogen bonds and an electrostatic interaction between the ammonium center and the carboxylate anion, forming a sheet along the ab plane. The carboxyl group of the (S)-2-phenoxypropionic acid molecule is connected to the top and bottom of the sheet via N+—H⋯O=C and O—H⋯O− [R22(7) graph set] hydrogen bonds, giving an (S,S)-homochiral layer, in which both methyl groups of (S)-alanine and the phenyl rings of (S)-2-phenoxypropionic acid are oriented in the same direction along the b axis.
CRelated literature
For the use of a chiral resolution agents, see: Hasegawa et al. (1998). For the of enantiomeric and racemic 2-phenoxypropionic acid, see: Sørensen & Larsen (2003). For the of (S)-alanine–(R)-2-phenoxypropionic acid, see: Takahashi & Fujii (2004).
Experimental
Crystal data
|
Data collection
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812020727/ds2190sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020727/ds2190Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812020727/ds2190Isup3.cml
All reagents were commercially available from WAKO Co. and used without purification.(S)-2-Phenoxypropionic acid (1.66 g, 10 mmol) and (S)-alanine (0.89 g, 10 mmol) were dissolved in a water/ethanol solution (10 ml, 1:1 v/v). The solution was refluxed for 10 min, cooled to room temperature, and then kept in the refrigerator for three days. Colorless single crystals of I were obtained that were suitable for X-ray diffraction study.
All hydrogen atoms were found in a difference Fourier map. The hydrogen atom of carboxylic O(1)—H was refined isotropically. Other hydrogen atoms were refined as riding atoms with Caromatic—H = 0.93 Å, Cmethyl—H = 0.96 Å, and Cmethine—H = 0.98 Å, and with Uiso(H) = 1.5Ueq(Cmethyl) and Uiso(H) = 1.2Ueq(Caromatic, Cmethine), respectively.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).C3H7NO2·C9H10O3 | F(000) = 272 |
Mr = 255.27 | Dx = 1.264 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: P 2yb | Cell parameters from 3229 reflections |
a = 5.227 (5) Å | θ = 2.3–28.5° |
b = 7.364 (5) Å | µ = 0.10 mm−1 |
c = 17.493 (5) Å | T = 293 K |
β = 95.232 (5)° | Plate, colourless |
V = 670.5 (8) Å3 | 0.7 × 0.5 × 0.3 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 2698 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.021 |
Graphite monochromator | θmax = 28.5°, θmin = 2.3° |
Detector resolution: 8.333 pixels mm-1 | h = −6→5 |
phi and ω scan | k = −9→9 |
3872 measured reflections | l = −21→23 |
2742 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0452P)2 + 0.0566P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.17 e Å−3 |
2742 reflections | Δρmin = −0.13 e Å−3 |
171 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008) |
1 restraint | Extinction coefficient: 0.160 (9) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 930 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.4 (8) |
C3H7NO2·C9H10O3 | V = 670.5 (8) Å3 |
Mr = 255.27 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.227 (5) Å | µ = 0.10 mm−1 |
b = 7.364 (5) Å | T = 293 K |
c = 17.493 (5) Å | 0.7 × 0.5 × 0.3 mm |
β = 95.232 (5)° |
Bruker APEXII CCD area-detector diffractometer | 2698 reflections with I > 2σ(I) |
3872 measured reflections | Rint = 0.021 |
2742 independent reflections |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.081 | Δρmax = 0.17 e Å−3 |
S = 1.06 | Δρmin = −0.13 e Å−3 |
2742 reflections | Absolute structure: Flack (1983), 930 Friedel pairs |
171 parameters | Absolute structure parameter: −0.4 (8) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2142 (2) | 0.91172 (17) | 0.27450 (7) | 0.0400 (3) | |
C2 | 0.2315 (3) | 0.9885 (2) | 0.19397 (8) | 0.0489 (3) | |
H2 | 0.4105 | 1.0177 | 0.1867 | 0.059* | |
C3 | 0.0685 (5) | 1.1604 (3) | 0.18625 (12) | 0.0785 (6) | |
H3A | 0.0795 | 1.2125 | 0.1363 | 0.118* | |
H3B | 0.1306 | 1.2461 | 0.2249 | 0.118* | |
H3C | −0.1071 | 1.1307 | 0.1926 | 0.118* | |
C4 | 0.2830 (3) | 0.7215 (2) | 0.12044 (7) | 0.0460 (3) | |
C5 | 0.5113 (3) | 0.6774 (3) | 0.16181 (8) | 0.0531 (3) | |
H5 | 0.5723 | 0.7466 | 0.2041 | 0.064* | |
C6 | 0.6486 (4) | 0.5288 (3) | 0.13974 (10) | 0.0688 (5) | |
H6 | 0.8015 | 0.4971 | 0.168 | 0.083* | |
C7 | 0.5623 (4) | 0.4276 (3) | 0.07671 (12) | 0.0776 (6) | |
H7 | 0.6572 | 0.3286 | 0.0622 | 0.093* | |
C8 | 0.3355 (4) | 0.4726 (3) | 0.03498 (10) | 0.0708 (5) | |
H8 | 0.2773 | 0.4045 | −0.0079 | 0.085* | |
C9 | 0.1955 (3) | 0.6180 (2) | 0.05671 (8) | 0.0572 (4) | |
H9 | 0.0412 | 0.6477 | 0.0288 | 0.069* | |
C10 | 0.5537 (2) | 0.48177 (15) | 0.48456 (7) | 0.0332 (2) | |
C11 | 0.6485 (2) | 0.55376 (16) | 0.41011 (6) | 0.0337 (2) | |
H11 | 0.5119 | 0.6252 | 0.3823 | 0.04* | |
C12 | 0.7222 (4) | 0.3969 (2) | 0.35972 (9) | 0.0634 (4) | |
H12A | 0.7836 | 0.4441 | 0.3136 | 0.095* | |
H12B | 0.5746 | 0.3217 | 0.3468 | 0.095* | |
H12C | 0.855 | 0.3261 | 0.387 | 0.095* | |
N1 | 0.87704 (17) | 0.67096 (13) | 0.42842 (5) | 0.0322 (2) | |
H1A | 1.0014 | 0.6064 | 0.4537 | 0.048* | |
H1B | 0.835 | 0.7636 | 0.4574 | 0.048* | |
H1C | 0.9317 | 0.7131 | 0.3851 | 0.048* | |
O1 | 0.3772 (2) | 0.98974 (17) | 0.32449 (6) | 0.0594 (3) | |
O2 | 0.0633 (2) | 0.79618 (16) | 0.28881 (5) | 0.0556 (3) | |
O3 | 0.1324 (2) | 0.86666 (16) | 0.13631 (5) | 0.0543 (3) | |
O4 | 0.72311 (17) | 0.45179 (16) | 0.53819 (5) | 0.0478 (2) | |
O5 | 0.32016 (16) | 0.45273 (15) | 0.48470 (6) | 0.0505 (3) | |
H1O | 0.348 (4) | 0.961 (4) | 0.3808 (13) | 0.090 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0455 (6) | 0.0409 (6) | 0.0347 (5) | −0.0023 (5) | 0.0092 (5) | 0.0001 (5) |
C2 | 0.0571 (8) | 0.0507 (7) | 0.0405 (6) | −0.0004 (6) | 0.0123 (5) | 0.0086 (6) |
C3 | 0.1025 (15) | 0.0610 (10) | 0.0741 (11) | 0.0222 (10) | 0.0188 (11) | 0.0239 (9) |
C4 | 0.0487 (7) | 0.0597 (8) | 0.0306 (5) | −0.0026 (6) | 0.0090 (5) | 0.0051 (5) |
C5 | 0.0523 (8) | 0.0688 (9) | 0.0387 (6) | 0.0046 (7) | 0.0064 (5) | −0.0053 (7) |
C6 | 0.0626 (10) | 0.0849 (13) | 0.0604 (9) | 0.0170 (9) | 0.0138 (8) | −0.0034 (9) |
C7 | 0.0906 (14) | 0.0761 (13) | 0.0697 (11) | 0.0092 (11) | 0.0269 (10) | −0.0153 (10) |
C8 | 0.0871 (12) | 0.0749 (11) | 0.0527 (8) | −0.0212 (10) | 0.0184 (8) | −0.0165 (8) |
C9 | 0.0613 (9) | 0.0745 (10) | 0.0355 (6) | −0.0130 (8) | 0.0029 (6) | 0.0007 (6) |
C10 | 0.0292 (5) | 0.0326 (5) | 0.0387 (5) | 0.0014 (4) | 0.0078 (4) | 0.0082 (4) |
C11 | 0.0309 (5) | 0.0378 (5) | 0.0321 (5) | −0.0065 (4) | 0.0009 (4) | 0.0051 (4) |
C12 | 0.0933 (12) | 0.0534 (8) | 0.0457 (7) | −0.0229 (8) | 0.0179 (8) | −0.0170 (6) |
N1 | 0.0313 (4) | 0.0328 (4) | 0.0335 (4) | −0.0041 (4) | 0.0076 (3) | 0.0015 (4) |
O1 | 0.0697 (7) | 0.0685 (7) | 0.0406 (5) | −0.0264 (6) | 0.0089 (5) | −0.0073 (5) |
O2 | 0.0657 (7) | 0.0647 (6) | 0.0372 (5) | −0.0238 (5) | 0.0086 (4) | 0.0042 (4) |
O3 | 0.0563 (6) | 0.0709 (7) | 0.0348 (4) | 0.0084 (5) | −0.0010 (4) | 0.0028 (4) |
O4 | 0.0364 (4) | 0.0718 (7) | 0.0358 (4) | 0.0054 (4) | 0.0060 (3) | 0.0173 (5) |
O5 | 0.0288 (4) | 0.0571 (5) | 0.0663 (6) | −0.0030 (4) | 0.0082 (4) | 0.0240 (5) |
C1—O2 | 1.2019 (17) | C7—H7 | 0.93 |
C1—O1 | 1.2980 (18) | C8—C9 | 1.370 (3) |
C1—C2 | 1.5281 (17) | C8—H8 | 0.93 |
C2—O3 | 1.4124 (19) | C9—H9 | 0.93 |
C2—C3 | 1.525 (3) | C10—O5 | 1.2398 (18) |
C2—H2 | 0.98 | C10—O4 | 1.2494 (16) |
C3—H3A | 0.96 | C10—C11 | 1.5298 (15) |
C3—H3B | 0.96 | C11—N1 | 1.4848 (17) |
C3—H3C | 0.96 | C11—C12 | 1.524 (2) |
C4—O3 | 1.3708 (19) | C11—H11 | 0.98 |
C4—C5 | 1.377 (2) | C12—H12A | 0.96 |
C4—C9 | 1.393 (2) | C12—H12B | 0.96 |
C5—C6 | 1.383 (3) | C12—H12C | 0.96 |
C5—H5 | 0.93 | N1—H1A | 0.89 |
C6—C7 | 1.373 (3) | N1—H1B | 0.89 |
C6—H6 | 0.93 | N1—H1C | 0.89 |
C7—C8 | 1.375 (3) | O1—H1O | 1.03 (2) |
O2—C1—O1 | 125.16 (12) | C9—C8—H8 | 120.1 |
O2—C1—C2 | 123.29 (12) | C7—C8—H8 | 120.1 |
O1—C1—C2 | 111.53 (12) | C8—C9—C4 | 120.31 (18) |
O3—C2—C3 | 107.36 (15) | C8—C9—H9 | 119.8 |
O3—C2—C1 | 112.01 (12) | C4—C9—H9 | 119.8 |
C3—C2—C1 | 108.02 (12) | O5—C10—O4 | 126.77 (11) |
O3—C2—H2 | 109.8 | O5—C10—C11 | 117.18 (11) |
C3—C2—H2 | 109.8 | O4—C10—C11 | 115.99 (10) |
C1—C2—H2 | 109.8 | N1—C11—C12 | 108.94 (11) |
C2—C3—H3A | 109.5 | N1—C11—C10 | 109.53 (9) |
C2—C3—H3B | 109.5 | C12—C11—C10 | 110.39 (11) |
H3A—C3—H3B | 109.5 | N1—C11—H11 | 109.3 |
C2—C3—H3C | 109.5 | C12—C11—H11 | 109.3 |
H3A—C3—H3C | 109.5 | C10—C11—H11 | 109.3 |
H3B—C3—H3C | 109.5 | C11—C12—H12A | 109.5 |
O3—C4—C5 | 124.33 (13) | C11—C12—H12B | 109.5 |
O3—C4—C9 | 115.83 (14) | H12A—C12—H12B | 109.5 |
C5—C4—C9 | 119.82 (15) | C11—C12—H12C | 109.5 |
C4—C5—C6 | 119.16 (15) | H12A—C12—H12C | 109.5 |
C4—C5—H5 | 120.4 | H12B—C12—H12C | 109.5 |
C6—C5—H5 | 120.4 | C11—N1—H1A | 109.5 |
C7—C6—C5 | 120.85 (19) | C11—N1—H1B | 109.5 |
C7—C6—H6 | 119.6 | H1A—N1—H1B | 109.5 |
C5—C6—H6 | 119.6 | C11—N1—H1C | 109.5 |
C6—C7—C8 | 120.01 (19) | H1A—N1—H1C | 109.5 |
C6—C7—H7 | 120 | H1B—N1—H1C | 109.5 |
C8—C7—H7 | 120 | C1—O1—H1O | 114.0 (14) |
C9—C8—C7 | 119.85 (17) | C4—O3—C2 | 117.36 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O5i | 0.89 | 2.05 | 2.916 (3) | 165 |
N1—H1B···O5ii | 0.89 | 1.94 | 2.822 (3) | 170 |
N1—H1C···O2i | 0.89 | 1.97 | 2.863 (3) | 177 |
O1—H1O···O4ii | 1.03 (2) | 1.50 (2) | 2.521 (3) | 169 (2) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C3H7NO2·C9H10O3 |
Mr | 255.27 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 5.227 (5), 7.364 (5), 17.493 (5) |
β (°) | 95.232 (5) |
V (Å3) | 670.5 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.7 × 0.5 × 0.3 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3872, 2742, 2698 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.672 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.081, 1.06 |
No. of reflections | 2742 |
No. of parameters | 171 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.13 |
Absolute structure | Flack (1983), 930 Friedel pairs |
Absolute structure parameter | −0.4 (8) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O5i | 0.89 | 2.05 | 2.916 (3) | 165 |
N1—H1B···O5ii | 0.89 | 1.94 | 2.822 (3) | 170 |
N1—H1C···O2i | 0.89 | 1.97 | 2.863 (3) | 177 |
O1—H1O···O4ii | 1.03 (2) | 1.50 (2) | 2.521 (3) | 169 (2) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z+1. |
Acknowledgements
This work was partially supported by a Grant-in-Aid for Young Scientists (B) (23700956) and a Grant-in-Aid for Scientific Research (C) (22300272) from the Japan Society for the Promotion of Science (JSPS). The X-ray crystallographic analysis was performed at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2009). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hasegawa, G., Miura, T., Watadani, T. & Hong, N. (1998). J. Synth. Org. Chem. Jpn, 56, 773–780. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sørensen, H. O. & Larsen, S. (2003). Acta Cryst. B59, 132–140. Web of Science CSD CrossRef IUCr Journals Google Scholar
Takahashi, Y. & Fujii, I. (2004). Anal. Sci. 20, x77–x78. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chiral 2-phenoxypropionic acid (PPA) has been known as a good and accessible optical resolving agent for amines (Hasegawa et al., 1998). The crystal structure of optical pure and racemic PPA has been reported (Sørensen & Larsen, 2003). And the crystal structure of co-crystal of (R)-PPA with (S)-alanine has been known (Takahashi & Fujii, 2004), but no results have ever reported on the details of the chiral discrimination between PPA and (S)-alanine. In this work, we present the crystal structure of the co-crystal of (S)-PPA with (S)-alanine (I) (Fig. 1). The co-crystal I crystallizes in the monoclinic system of space group P21. (S)-Alanine assembles a chiral two-dimensional sheet along the ab plane, in which the ammonium cation is strongly held with the carboxylate anion by two hydrogen bonds and one electrostatic interaction. The N(1)+—H···O(5)- hydrogen bonds are 2.822 (2) Å and 2.916 (2) Å. The interatomic distance between ammonium center N(1)+ and carboxylate O(4)- is 2.960 (2) Å. The carboxyl C=O of PPA is connected to the ammonium N+—H of (S)-alanine, and the O—H of PPA to the carboxylate O- of (S)-alanine. The N(1)+—H···O(2) and O(1)—H···O(4)- distances are 2.863 (2) Å and 2.521 (2) Å, respectively. The phenyl ring of PPA is oriented in the same direction of the methyl group of (S)-alanine of chiral two-dimensional sheet, yielding a (S,S)-homochiral layer (Fig. 2). On the basis of this finding, the development of optical resolution of amino acid using PPA as an optical resolving agent is under investigation.