organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino-N-benzyl-6-(4-fluoro­phen­yl)thieno[2,3-b]pyridine-2-carboxamide

aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yangli@scu.edu.cn

(Received 12 April 2012; accepted 16 May 2012; online 19 May 2012)

In the title compound, C21H16FN3OS, the thieno[2,3-b]pyridine system forms dihedral angles of 10.57 (12) and 83.87 (5)° with the fluoro­phenyl ring at the 6-position and the phenyl ring of the benzyl group, respectively. In the crystal, mol­ecules are linked by weak N—H⋯N anf N—H⋯O hydrogen bonds and ππ stacking inter­actions involving fluoro­phenyl rings of adjacent mol­ecules, with a centroid–centroid distance of 3.648 (10) Å. In addition, intra­molecular N—H⋯S and N—H⋯O hydrogen bonds contribute to the stability of the mol­ecular conformation.

Related literature

For the biological activity of thieno[2,3-b]pyridine derivatives, see: Litvinov et al. (2005[Litvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864-904.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16FN3OS

  • Mr = 377.43

  • Monoclinic, P 21 /c

  • a = 18.9008 (7) Å

  • b = 9.9828 (4) Å

  • c = 9.5924 (4) Å

  • β = 102.224 (4)°

  • V = 1768.89 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.991, Tmax = 1.000

  • 7919 measured reflections

  • 3609 independent reflections

  • 2665 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.104

  • S = 1.03

  • 3609 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S1 0.86 2.68 3.0897 (16) 111
N3—H3⋯N2i 0.86 2.51 3.253 (2) 146
N2—H2B⋯O1 0.90 (2) 2.15 (2) 2.741 (2) 122.7 (17)
N2—H2B⋯O1ii 0.90 (2) 2.20 (2) 3.015 (2) 150.0 (17)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Thieno[2,3-b]pyridine derivatives are of great importance owing to their wide biological properties (Litvinov et al., 2005). The title compound is one of the key intermediates in our synthetic investigations of anticancer drugs. Herein we report its crystal structure.

As shown in Fig. 1, the thieno[2,3-b]pyridine ring forms dihedral angles of 10.57(0.12)° and 83.87(0.05)° with the monofluoro-benzene at 6-position and the phenyl rings at 2-position, respectively.In the crystal packing, stacking interactions involving phenyl rings containing fluorine atom of adjacent molecules are helpful for the stabilization of the crystal as well as intermolecular N—H···N hydrogen bonds.In addition,intramolecular N—H···O and N—H···S hydrogen bonds help to stabilize the molecular conformation (Table 1 and Fig.2).

Related literature top

For the biological activity of thieno[2,3-b]pyridine derivatives, see: Litvinov et al. (2005).

Experimental top

To a solution of 6-(4-fluorophenyl)-2-thioxo-1,2-dihydropyridine-3-carbonitrile (2.30 g, 10 mmol) in DMF (15.00 ml) was added dropwise a solution of 10% sodium hydroxide (8.00 ml). After stirring at room temperature for 0.5 h and then the temperature was raised to 85 °C and then 10% sodium hydroxide (8.00 ml) and N-benzyl-2-chloroacetamide (2.20 g, 12.0 mmol) were added. The reaction mixture was stirred under reflux until complete conversion of the starting materials (6 h, monitored by TLC). The mixture was then cooled to room temperature and crystallized to give 3.17 g of an yellow solid (84% yield).The product was recrystallized from ethanol to afford the title compound as an off-yellow solid (yield: 60%). Crystals suitable for X-ray analysis were obtained by slow evaporation using dichloromethane methanol (2:1 v/v) as eluent.

Refinement top

H atoms of the amino group were located in a difference map and refined freely. The remaining H atoms were positioned geometrically (C—H = 0.93–0.97 Å, N—H = 0.82–0.90 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing intermolecular hydrogen bonds of N—H···N as blue dashed lines,and intramolecular hydrogen bonds of N—H···O and N—H···S as green dashed lines
3-Amino-N-benzyl-6-(4-fluorophenyl)thieno[2,3-b]pyridine-2- carboxamide top
Crystal data top
C21H16FN3OSF(000) = 784
Mr = 377.43Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 18.9008 (7) ÅCell parameters from 2427 reflections
b = 9.9828 (4) Åθ = 3.0–29.2°
c = 9.5924 (4) ŵ = 0.21 mm1
β = 102.224 (4)°T = 293 K
V = 1768.89 (11) Å3Block, yellow
Z = 40.40 × 0.30 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3609 independent reflections
Radiation source: Enhance (Mo) X-ray Source2665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 2123
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 1211
Tmin = 0.991, Tmax = 1.000l = 1111
7919 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.2875P]
where P = (Fo2 + 2Fc2)/3
3609 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H16FN3OSV = 1768.89 (11) Å3
Mr = 377.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.9008 (7) ŵ = 0.21 mm1
b = 9.9828 (4) ÅT = 293 K
c = 9.5924 (4) Å0.40 × 0.30 × 0.10 mm
β = 102.224 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3609 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2665 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 1.000Rint = 0.021
7919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
3609 reflectionsΔρmin = 0.23 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20491 (3)0.22083 (5)0.33501 (5)0.04353 (16)
F10.68007 (7)0.14850 (17)0.54263 (17)0.0879 (5)
O10.01663 (7)0.12650 (13)0.08498 (13)0.0415 (3)
N10.34252 (8)0.16214 (16)0.32473 (17)0.0430 (4)
N20.12841 (11)0.01149 (18)0.01334 (18)0.0431 (4)
N30.03925 (8)0.26248 (15)0.27578 (16)0.0371 (4)
H30.06980.28930.35020.044*
C10.61019 (12)0.1375 (3)0.4718 (3)0.0612 (6)
C20.55976 (13)0.2160 (3)0.5132 (3)0.0649 (7)
H20.57300.27680.58760.078*
C30.48814 (12)0.2039 (2)0.4427 (3)0.0588 (6)
H3A0.45320.25700.47060.071*
C40.46761 (11)0.1141 (2)0.3312 (2)0.0467 (5)
C50.52116 (12)0.0370 (3)0.2941 (3)0.0629 (7)
H50.50880.02480.22040.075*
C60.59308 (12)0.0489 (3)0.3640 (3)0.0682 (7)
H60.62870.00310.33690.082*
C70.38985 (11)0.0995 (2)0.2613 (2)0.0441 (5)
C80.36703 (11)0.0228 (2)0.1384 (2)0.0560 (6)
H80.40130.01890.09640.067*
C90.29486 (11)0.0081 (2)0.0786 (2)0.0514 (6)
H90.27990.04290.00350.062*
C100.24457 (10)0.07078 (18)0.14290 (19)0.0363 (4)
C110.27268 (10)0.14647 (18)0.26477 (19)0.0370 (4)
C120.16689 (10)0.07362 (17)0.10565 (19)0.0335 (4)
C130.13826 (10)0.15083 (17)0.19911 (18)0.0334 (4)
C140.06103 (10)0.17874 (17)0.18296 (18)0.0322 (4)
C150.03518 (10)0.30762 (18)0.2511 (2)0.0383 (5)
H15A0.05100.32800.15040.046*
H15B0.03650.39050.30320.046*
C160.08885 (10)0.21225 (17)0.29233 (18)0.0337 (4)
C170.16173 (11)0.2454 (2)0.2581 (2)0.0465 (5)
H170.17620.32360.20730.056*
C180.21297 (12)0.1646 (2)0.2981 (3)0.0582 (6)
H180.26150.18920.27550.070*
C190.19253 (12)0.0472 (2)0.3715 (2)0.0540 (6)
H190.22700.00750.39880.065*
C200.12068 (11)0.0121 (2)0.4037 (2)0.0451 (5)
H200.10660.06740.45210.054*
C210.06921 (10)0.09380 (18)0.36486 (19)0.0382 (4)
H210.02070.06890.38770.046*
H2A0.1510 (12)0.042 (2)0.052 (2)0.056 (7)*
H2B0.0817 (12)0.005 (2)0.013 (2)0.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0332 (3)0.0534 (3)0.0409 (3)0.0001 (2)0.0009 (2)0.0129 (2)
F10.0331 (7)0.1281 (13)0.0949 (12)0.0129 (8)0.0034 (7)0.0030 (10)
O10.0347 (7)0.0465 (8)0.0401 (8)0.0024 (6)0.0006 (6)0.0115 (6)
N10.0315 (9)0.0477 (10)0.0467 (10)0.0001 (8)0.0010 (8)0.0024 (8)
N20.0341 (10)0.0547 (11)0.0402 (10)0.0041 (9)0.0074 (8)0.0145 (8)
N30.0326 (9)0.0431 (9)0.0338 (8)0.0009 (7)0.0032 (7)0.0076 (7)
C10.0297 (12)0.0809 (17)0.0694 (16)0.0101 (12)0.0023 (11)0.0138 (14)
C20.0439 (14)0.0742 (16)0.0707 (17)0.0118 (13)0.0009 (12)0.0073 (13)
C30.0385 (13)0.0658 (15)0.0693 (16)0.0040 (12)0.0050 (11)0.0043 (12)
C40.0320 (11)0.0515 (12)0.0553 (13)0.0018 (10)0.0060 (10)0.0072 (10)
C50.0375 (13)0.0783 (17)0.0714 (17)0.0007 (12)0.0083 (12)0.0095 (13)
C60.0351 (13)0.0916 (19)0.0772 (18)0.0046 (13)0.0108 (12)0.0017 (15)
C70.0341 (11)0.0488 (12)0.0481 (12)0.0001 (10)0.0057 (9)0.0025 (9)
C80.0366 (12)0.0725 (15)0.0592 (14)0.0053 (11)0.0109 (11)0.0146 (12)
C90.0399 (12)0.0651 (14)0.0478 (13)0.0023 (11)0.0057 (10)0.0162 (10)
C100.0332 (10)0.0390 (10)0.0357 (10)0.0003 (9)0.0049 (8)0.0007 (8)
C110.0320 (10)0.0388 (10)0.0379 (10)0.0003 (9)0.0024 (8)0.0020 (8)
C120.0337 (10)0.0339 (9)0.0317 (10)0.0023 (8)0.0040 (8)0.0024 (8)
C130.0319 (10)0.0345 (10)0.0318 (9)0.0022 (8)0.0022 (8)0.0003 (8)
C140.0336 (10)0.0316 (9)0.0301 (9)0.0017 (8)0.0040 (8)0.0028 (7)
C150.0375 (11)0.0389 (10)0.0375 (11)0.0074 (9)0.0058 (9)0.0005 (8)
C160.0346 (10)0.0358 (10)0.0298 (9)0.0027 (9)0.0046 (8)0.0074 (7)
C170.0375 (12)0.0476 (12)0.0527 (13)0.0085 (10)0.0060 (10)0.0030 (9)
C180.0320 (12)0.0698 (15)0.0725 (16)0.0062 (12)0.0104 (11)0.0006 (13)
C190.0427 (13)0.0606 (14)0.0607 (14)0.0075 (11)0.0157 (11)0.0009 (11)
C200.0473 (13)0.0445 (11)0.0435 (12)0.0018 (10)0.0094 (10)0.0000 (9)
C210.0339 (11)0.0447 (11)0.0349 (10)0.0043 (9)0.0045 (8)0.0008 (8)
Geometric parameters (Å, º) top
S1—C111.7353 (19)C7—C81.394 (3)
S1—C131.7548 (18)C8—H80.9300
F1—C11.356 (2)C8—C91.371 (3)
O1—C141.235 (2)C9—H90.9300
N1—C71.339 (2)C9—C101.387 (3)
N1—C111.333 (2)C10—C111.399 (2)
N2—C121.366 (2)C10—C121.436 (3)
N2—H2A0.82 (2)C12—C131.377 (2)
N2—H2B0.90 (2)C13—C141.462 (2)
N3—H30.8600C15—H15A0.9700
N3—C141.348 (2)C15—H15B0.9700
N3—C151.448 (2)C15—C161.504 (3)
C1—C21.357 (3)C16—C171.387 (3)
C1—C61.347 (3)C16—C211.382 (2)
C2—H20.9300C17—H170.9300
C2—C31.384 (3)C17—C181.376 (3)
C3—H3A0.9300C18—H180.9300
C3—C41.386 (3)C18—C191.379 (3)
C4—C51.377 (3)C19—H190.9300
C4—C71.488 (3)C19—C201.373 (3)
C5—H50.9300C20—H200.9300
C5—C61.388 (3)C20—C211.380 (3)
C6—H60.9300C21—H210.9300
C11—S1—C1390.80 (9)C11—C10—C12112.62 (16)
C11—N1—C7116.41 (17)N1—C11—S1121.82 (15)
C12—N2—H2A116.1 (16)N1—C11—C10126.18 (18)
C12—N2—H2B115.6 (13)C10—C11—S1112.00 (14)
H2A—N2—H2B119 (2)N2—C12—C10122.31 (17)
C14—N3—H3119.8N2—C12—C13125.82 (18)
C14—N3—C15120.47 (15)C13—C12—C10111.78 (16)
C15—N3—H3119.8C12—C13—S1112.79 (14)
F1—C1—C2118.5 (2)C12—C13—C14123.99 (16)
C6—C1—F1119.2 (2)C14—C13—S1123.12 (13)
C6—C1—C2122.3 (2)O1—C14—N3120.75 (17)
C1—C2—H2120.6O1—C14—C13120.16 (16)
C1—C2—C3118.8 (2)N3—C14—C13119.09 (16)
C3—C2—H2120.6N3—C15—H15A108.2
C2—C3—H3A119.4N3—C15—H15B108.2
C2—C3—C4121.2 (2)N3—C15—C16116.49 (15)
C4—C3—H3A119.4H15A—C15—H15B107.3
C3—C4—C7119.98 (19)C16—C15—H15A108.2
C5—C4—C3117.4 (2)C16—C15—H15B108.2
C5—C4—C7122.6 (2)C17—C16—C15118.56 (16)
C4—C5—H5119.1C21—C16—C15123.34 (17)
C4—C5—C6121.7 (2)C21—C16—C17118.10 (18)
C6—C5—H5119.1C16—C17—H17119.5
C1—C6—C5118.6 (2)C18—C17—C16121.10 (19)
C1—C6—H6120.7C18—C17—H17119.5
C5—C6—H6120.7C17—C18—H18119.9
N1—C7—C4116.12 (18)C17—C18—C19120.2 (2)
N1—C7—C8121.59 (18)C19—C18—H18119.9
C8—C7—C4122.28 (19)C18—C19—H19120.4
C7—C8—H8119.5C20—C19—C18119.2 (2)
C9—C8—C7121.0 (2)C20—C19—H19120.4
C9—C8—H8119.5C19—C20—H20119.7
C8—C9—H9120.6C19—C20—C21120.6 (2)
C8—C9—C10118.70 (19)C21—C20—H20119.7
C10—C9—H9120.6C16—C21—H21119.6
C9—C10—C11116.14 (18)C20—C21—C16120.79 (18)
C9—C10—C12131.23 (18)C20—C21—H21119.6
S1—C13—C14—O1179.94 (13)C9—C10—C11—N10.9 (3)
S1—C13—C14—N30.3 (2)C9—C10—C12—N22.3 (3)
F1—C1—C2—C3179.1 (2)C9—C10—C12—C13179.1 (2)
F1—C1—C6—C5178.8 (2)C10—C12—C13—S10.40 (19)
N1—C7—C8—C90.5 (3)C10—C12—C13—C14176.11 (16)
N2—C12—C13—S1177.12 (15)C11—S1—C13—C120.46 (14)
N2—C12—C13—C140.6 (3)C11—S1—C13—C14176.09 (15)
N3—C15—C16—C17173.84 (16)C11—N1—C7—C4178.27 (17)
N3—C15—C16—C217.2 (2)C11—N1—C7—C80.5 (3)
C1—C2—C3—C40.3 (4)C11—C10—C12—N2176.96 (16)
C2—C1—C6—C50.6 (4)C11—C10—C12—C130.1 (2)
C2—C3—C4—C50.4 (3)C12—C10—C11—S10.2 (2)
C2—C3—C4—C7177.6 (2)C12—C10—C11—N1179.78 (17)
C3—C4—C5—C60.7 (4)C12—C13—C14—O13.8 (3)
C3—C4—C7—N19.0 (3)C12—C13—C14—N3175.88 (16)
C3—C4—C7—C8172.3 (2)C13—S1—C11—N1179.96 (16)
C4—C5—C6—C10.8 (4)C13—S1—C11—C100.39 (14)
C4—C7—C8—C9178.2 (2)C14—N3—C15—C1680.5 (2)
C5—C4—C7—N1167.95 (19)C15—N3—C14—O18.7 (3)
C5—C4—C7—C810.8 (3)C15—N3—C14—C13170.97 (15)
C6—C1—C2—C30.4 (4)C15—C16—C17—C18177.43 (18)
C7—N1—C11—S1179.73 (14)C15—C16—C21—C20178.02 (17)
C7—N1—C11—C100.2 (3)C16—C17—C18—C191.0 (3)
C7—C4—C5—C6177.7 (2)C17—C16—C21—C200.9 (3)
C7—C8—C9—C100.2 (3)C17—C18—C19—C200.2 (3)
C8—C9—C10—C110.8 (3)C18—C19—C20—C210.8 (3)
C8—C9—C10—C12180.0 (2)C19—C20—C21—C160.3 (3)
C9—C10—C11—S1179.59 (15)C21—C16—C17—C181.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S10.862.683.0897 (16)111
N3—H3···N2i0.862.513.253 (2)146
N2—H2B···O10.90 (2)2.15 (2)2.741 (2)122.7 (17)
N2—H2B···O1ii0.90 (2)2.20 (2)3.015 (2)150.0 (17)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC21H16FN3OS
Mr377.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.9008 (7), 9.9828 (4), 9.5924 (4)
β (°) 102.224 (4)
V3)1768.89 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.991, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7919, 3609, 2665
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.03
No. of reflections3609
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S10.862.683.0897 (16)110.8
N3—H3···N2i0.862.513.253 (2)145.6
N2—H2B···O10.90 (2)2.15 (2)2.741 (2)122.7 (17)
N2—H2B···O1ii0.90 (2)2.20 (2)3.015 (2)150.0 (17)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLitvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864–904.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds