organic compounds
1-(4-Carboxybutan-2-ylidene)-4-phenylthiosemicarbazide
aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo - CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain
*Correspondence e-mail: sgg@uniovi.es
The molecule of the title compound, C12H15N3O2S, which belongs to the family of thiosemicarbazones, containing an acid group, adopts a semi-closed conformation with an intramolecular N—H⋯N hydrogen bond. In the crystal, molecules are linked by strong N—H⋯O and O—H⋯S hydrogen bonds between the acid group and thiosemicarbazone unit, with one additional intermolecular hydrogen C—H⋯O interaction. These three interactions form R22(8) and a R21(7) rings and the molecules related by the c-glide plane are linked into a zigzag chain along [001].
Related literature
For related compounds and their biological activity, see: Ng (1992); Papageorgiou et al. (1997); Du et al. (2002). For a description of the Cambridge Crystallographic Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999), PLATON (Spek, 2003), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812023793/ds2195sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023793/ds2195Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812023793/ds2195Isup3.cml
A solution of levulinic acid (1.1612 g, 0.01 mol) and 4-phenylsemicarbazide (1.6723 g, 0.01 mol) in absolute methanol (50 ml) was refluxed for 1 h in the presence of p-toluenesulfonic acid as catalyst, with continuous stirring. On cooling to room temperature the precipitate was filtered off, washed with copious cold methanol and dried in air. White single crystals of compound (I) were obtained after recrystallization from a solution in methanol.
The NH ,CH2 and OH H-atoms were found in difference Fourier maps and were freely refined: N2—H = 0.83 (2) Å, N3—H = 0.81 (2) Å , C3—H=0.97 (2) Å, C2—H(2A)=0.94 (2) Å, C2—H(2B)=0.98 (2) Å and O(2)—H=0.92 (3) Å. All other C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å for aromatic CH with Uiso(H) = 1.2 × Ueq(C) and CH3 with Uiso(H) = 1.5 × Ueq(C). At the end of the
the highest peak in the electron density was 0.301 eÅ -3, while the deepest hole was -0.283 eÅ -3.Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell
CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999), PLATON (Spek, 2003), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010)..C12H15N3O2S | F(000) = 560 |
Mr = 265.33 | Dx = 1.286 Mg m−3 |
Monoclinic, P21/c | Melting point: 437 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54180 Å |
a = 11.2812 (4) Å | Cell parameters from 6997 reflections |
b = 9.3450 (4) Å | θ = 3.4–70.4° |
c = 13.4120 (5) Å | µ = 2.10 mm−1 |
β = 104.176 (3)° | T = 293 K |
V = 1370.87 (9) Å3 | Blocks, white |
Z = 4 | 0.26 × 0.18 × 0.12 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2601 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2294 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 10.2673 pixels mm-1 | θmax = 70.5°, θmin = 4.0° |
ω scans | h = −13→12 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −11→10 |
Tmin = 0.907, Tmax = 1.000 | l = −16→16 |
12283 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0645P)2 + 0.3083P] where P = (Fo2 + 2Fc2)/3 |
2601 reflections | (Δ/σ)max < 0.001 |
191 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C12H15N3O2S | V = 1370.87 (9) Å3 |
Mr = 265.33 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 11.2812 (4) Å | µ = 2.10 mm−1 |
b = 9.3450 (4) Å | T = 293 K |
c = 13.4120 (5) Å | 0.26 × 0.18 × 0.12 mm |
β = 104.176 (3)° |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2601 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | 2294 reflections with I > 2σ(I) |
Tmin = 0.907, Tmax = 1.000 | Rint = 0.027 |
12283 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.30 e Å−3 |
2601 reflections | Δρmin = −0.28 e Å−3 |
191 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.78464 (4) | 0.25421 (5) | 0.48897 (3) | 0.05613 (18) | |
N2 | 0.99203 (13) | 0.17312 (16) | 0.44863 (11) | 0.0480 (3) | |
N1 | 1.05662 (12) | 0.10898 (15) | 0.38565 (10) | 0.0461 (3) | |
O1 | 0.95660 (14) | 0.02621 (17) | 0.13593 (12) | 0.0715 (4) | |
N3 | 0.82411 (14) | 0.10334 (16) | 0.32848 (12) | 0.0519 (4) | |
O2 | 1.10103 (15) | 0.19167 (18) | 0.15461 (11) | 0.0776 (5) | |
C4 | 1.17284 (14) | 0.11152 (18) | 0.40985 (12) | 0.0470 (4) | |
C7 | 0.70327 (15) | 0.08424 (18) | 0.26779 (12) | 0.0479 (4) | |
C6 | 0.86830 (14) | 0.17285 (17) | 0.41730 (12) | 0.0452 (4) | |
C5 | 1.25209 (18) | 0.1801 (3) | 0.50355 (15) | 0.0701 (6) | |
H5A | 1.2016 | 0.2207 | 0.5445 | 0.105* | |
H5B | 1.3002 | 0.2542 | 0.4832 | 0.105* | |
H5C | 1.3052 | 0.1094 | 0.5431 | 0.105* | |
C3 | 1.23533 (17) | 0.0414 (2) | 0.33614 (14) | 0.0549 (4) | |
C10 | 0.47481 (18) | 0.0357 (2) | 0.13805 (15) | 0.0642 (5) | |
H10 | 0.3979 | 0.0192 | 0.0949 | 0.077* | |
C8 | 0.60898 (17) | 0.1802 (2) | 0.26478 (15) | 0.0610 (5) | |
H8 | 0.6220 | 0.2617 | 0.3058 | 0.073* | |
C2 | 1.14856 (19) | −0.0293 (2) | 0.24553 (15) | 0.0587 (5) | |
C1 | 1.06851 (18) | 0.0751 (2) | 0.17557 (13) | 0.0563 (4) | |
C12 | 0.68317 (17) | −0.0348 (2) | 0.20479 (14) | 0.0567 (4) | |
H12 | 0.7464 | −0.0991 | 0.2059 | 0.068* | |
C9 | 0.49515 (18) | 0.1538 (2) | 0.20007 (16) | 0.0662 (5) | |
H9 | 0.4314 | 0.2175 | 0.1988 | 0.079* | |
C11 | 0.56902 (19) | −0.0583 (2) | 0.14005 (15) | 0.0657 (5) | |
H11 | 0.5559 | −0.1384 | 0.0976 | 0.079* | |
H2A | 1.1951 (19) | −0.075 (2) | 0.2050 (16) | 0.064 (6)* | |
H2B | 1.097 (2) | −0.101 (2) | 0.2673 (17) | 0.073 (6)* | |
H3B | 1.2903 (19) | −0.032 (2) | 0.3704 (16) | 0.065 (6)* | |
H3A | 1.2844 (18) | 0.113 (2) | 0.3127 (15) | 0.059 (5)* | |
H2N | 1.027 (2) | 0.208 (2) | 0.5052 (18) | 0.064 (6)* | |
H3N | 0.879 (2) | 0.068 (2) | 0.3071 (17) | 0.063 (6)* | |
H1O | 0.910 (3) | 0.096 (3) | 0.096 (2) | 0.108 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0539 (3) | 0.0688 (3) | 0.0476 (3) | 0.00688 (19) | 0.0162 (2) | −0.00087 (18) |
N2 | 0.0457 (7) | 0.0563 (8) | 0.0410 (7) | −0.0005 (6) | 0.0085 (6) | −0.0048 (6) |
N1 | 0.0467 (7) | 0.0504 (8) | 0.0409 (7) | 0.0020 (6) | 0.0098 (6) | −0.0004 (6) |
O1 | 0.0667 (9) | 0.0708 (9) | 0.0701 (9) | −0.0106 (7) | 0.0035 (7) | 0.0069 (7) |
N3 | 0.0431 (7) | 0.0569 (9) | 0.0541 (8) | 0.0008 (6) | 0.0089 (6) | −0.0107 (7) |
O2 | 0.0800 (9) | 0.0864 (10) | 0.0576 (8) | −0.0231 (8) | 0.0000 (7) | 0.0237 (7) |
C4 | 0.0462 (8) | 0.0525 (9) | 0.0412 (8) | −0.0028 (7) | 0.0082 (7) | 0.0048 (7) |
C7 | 0.0449 (8) | 0.0520 (9) | 0.0460 (8) | −0.0054 (7) | 0.0094 (7) | 0.0010 (7) |
C6 | 0.0478 (8) | 0.0430 (8) | 0.0445 (8) | 0.0002 (6) | 0.0108 (7) | 0.0046 (6) |
C5 | 0.0507 (10) | 0.1051 (17) | 0.0524 (10) | −0.0135 (11) | 0.0089 (8) | −0.0109 (10) |
C3 | 0.0501 (9) | 0.0641 (11) | 0.0519 (10) | 0.0064 (8) | 0.0155 (8) | 0.0066 (8) |
C10 | 0.0520 (10) | 0.0791 (13) | 0.0556 (11) | −0.0102 (9) | 0.0019 (8) | −0.0004 (9) |
C8 | 0.0509 (10) | 0.0628 (11) | 0.0649 (11) | 0.0019 (8) | 0.0055 (8) | −0.0107 (9) |
C2 | 0.0680 (12) | 0.0591 (11) | 0.0523 (10) | 0.0051 (9) | 0.0209 (9) | −0.0045 (8) |
C1 | 0.0647 (11) | 0.0649 (11) | 0.0406 (8) | −0.0051 (9) | 0.0153 (8) | −0.0021 (8) |
C12 | 0.0564 (10) | 0.0564 (10) | 0.0551 (10) | 0.0000 (8) | 0.0095 (8) | −0.0052 (8) |
C9 | 0.0504 (10) | 0.0776 (13) | 0.0657 (12) | 0.0048 (9) | 0.0049 (9) | −0.0022 (10) |
C11 | 0.0677 (12) | 0.0672 (12) | 0.0569 (11) | −0.0104 (9) | 0.0052 (9) | −0.0117 (9) |
S1—C6 | 1.6843 (17) | C5—H5C | 0.9600 |
N2—C6 | 1.356 (2) | C3—C2 | 1.513 (3) |
N2—N1 | 1.3802 (19) | C3—H3B | 0.97 (2) |
N2—H2N | 0.83 (2) | C3—H3A | 0.97 (2) |
N1—C4 | 1.271 (2) | C10—C9 | 1.367 (3) |
O1—C1 | 1.325 (2) | C10—C11 | 1.374 (3) |
O1—H1O | 0.92 (3) | C10—H10 | 0.9300 |
N3—C6 | 1.341 (2) | C8—C9 | 1.385 (3) |
N3—C7 | 1.418 (2) | C8—H8 | 0.9300 |
N3—H3N | 0.81 (2) | C2—C1 | 1.494 (3) |
O2—C1 | 1.205 (2) | C2—H2A | 0.94 (2) |
C4—C5 | 1.496 (2) | C2—H2B | 0.98 (2) |
C4—C3 | 1.498 (2) | C12—C11 | 1.383 (3) |
C7—C12 | 1.381 (3) | C12—H12 | 0.9300 |
C7—C8 | 1.384 (3) | C9—H9 | 0.9300 |
C5—H5A | 0.9600 | C11—H11 | 0.9300 |
C5—H5B | 0.9600 | ||
C6—N2—N1 | 117.86 (14) | C2—C3—H3A | 110.4 (12) |
C6—N2—H2N | 120.3 (15) | H3B—C3—H3A | 107.1 (17) |
N1—N2—H2N | 121.8 (15) | C9—C10—C11 | 119.38 (18) |
C4—N1—N2 | 120.11 (14) | C9—C10—H10 | 120.3 |
C1—O1—H1O | 110.1 (18) | C11—C10—H10 | 120.3 |
C6—N3—C7 | 131.84 (16) | C7—C8—C9 | 119.39 (18) |
C6—N3—H3N | 111.3 (15) | C7—C8—H8 | 120.3 |
C7—N3—H3N | 116.9 (15) | C9—C8—H8 | 120.3 |
N1—C4—C5 | 126.09 (16) | C1—C2—C3 | 113.05 (16) |
N1—C4—C3 | 116.48 (15) | C1—C2—H2A | 105.5 (13) |
C5—C4—C3 | 117.42 (15) | C3—C2—H2A | 108.5 (12) |
C12—C7—C8 | 119.60 (16) | C1—C2—H2B | 108.7 (13) |
C12—C7—N3 | 116.31 (16) | C3—C2—H2B | 112.0 (13) |
C8—C7—N3 | 124.00 (16) | H2A—C2—H2B | 108.9 (18) |
N3—C6—N2 | 114.00 (15) | O2—C1—O1 | 122.19 (18) |
N3—C6—S1 | 125.96 (13) | O2—C1—C2 | 124.43 (18) |
N2—C6—S1 | 120.04 (12) | O1—C1—C2 | 113.37 (17) |
C4—C5—H5A | 109.5 | C7—C12—C11 | 120.02 (18) |
C4—C5—H5B | 109.5 | C7—C12—H12 | 120.0 |
H5A—C5—H5B | 109.5 | C11—C12—H12 | 120.0 |
C4—C5—H5C | 109.5 | C10—C9—C8 | 121.13 (19) |
H5A—C5—H5C | 109.5 | C10—C9—H9 | 119.4 |
H5B—C5—H5C | 109.5 | C8—C9—H9 | 119.4 |
C4—C3—C2 | 113.87 (15) | C10—C11—C12 | 120.47 (19) |
C4—C3—H3B | 110.5 (12) | C10—C11—H11 | 119.8 |
C2—C3—H3B | 106.5 (13) | C12—C11—H11 | 119.8 |
C4—C3—H3A | 108.3 (12) | ||
C6—N2—N1—C4 | 177.24 (15) | C12—C7—C8—C9 | 1.3 (3) |
N2—N1—C4—C5 | −0.2 (3) | N3—C7—C8—C9 | 177.77 (18) |
N2—N1—C4—C3 | −179.00 (15) | C4—C3—C2—C1 | 66.2 (2) |
C6—N3—C7—C12 | −155.39 (18) | C3—C2—C1—O2 | 37.4 (3) |
C6—N3—C7—C8 | 28.0 (3) | C3—C2—C1—O1 | −143.94 (17) |
C7—N3—C6—N2 | −176.52 (17) | C8—C7—C12—C11 | −0.7 (3) |
C7—N3—C6—S1 | 4.0 (3) | N3—C7—C12—C11 | −177.45 (17) |
N1—N2—C6—N3 | 2.5 (2) | C7—C8—C9—C10 | −1.0 (3) |
N1—N2—C6—S1 | −177.98 (11) | C9—C10—C11—C12 | 0.6 (3) |
N1—C4—C3—C2 | −3.1 (2) | C7—C12—C11—C10 | −0.2 (3) |
C5—C4—C3—C2 | 178.08 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···N1 | 0.81 (2) | 2.06 (2) | 2.547 (2) | 118.1 (19) |
N2—H2N···O2i | 0.83 (2) | 2.19 (2) | 3.013 (2) | 174 (2) |
C5—H5A···O2i | 0.96 | 2.23 | 3.184 (3) | 174 |
O1—H1O···S1ii | 0.92 (3) | 2.24 (3) | 3.1600 (17) | 174 (3) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H15N3O2S |
Mr | 265.33 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.2812 (4), 9.3450 (4), 13.4120 (5) |
β (°) | 104.176 (3) |
V (Å3) | 1370.87 (9) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.10 |
Crystal size (mm) | 0.26 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Tmin, Tmax | 0.907, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12283, 2601, 2294 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.611 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.114, 1.05 |
No. of reflections | 2601 |
No. of parameters | 191 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.28 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX publication routines (Farrugia, 1999), PLATON (Spek, 2003), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010)..
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···N1 | 0.81 (2) | 2.06 (2) | 2.547 (2) | 118.1 (19) |
N2—H2N···O2i | 0.83 (2) | 2.19 (2) | 3.013 (2) | 174 (2) |
C5—H5A···O2i | 0.96 | 2.23 | 3.184 (3) | 173.6 |
O1—H1O···S1ii | 0.92 (3) | 2.24 (3) | 3.1600 (17) | 174 (3) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
Financial support was given by the Agencia Española de Cooperación Internacional y Desarrollo (AECID), FEDER funding, the Spanish MINECO (MAT2006–01997, MAT2010-15094 and the Factoría de Cristalización Consolider Ingenio-2010) and the Gobierno del Principado de Asturias (FICYT).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Du, X., Guo, C., Hansel, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrow, J. H. & Cohen, F. E. (2002). J. Med. Chem. 45, 2695–2707. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Ng, S. W. (1992). Acta Cryst. C48, 2057–2058. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Papageorgiou, A., Iakovidou, Z., Mourelatos, D., Mioglou, E., Boutis, L., Kotsis, A., Kovala-Demertzi, D., Domopoulou, A., West, D. X. & Demertzis, M. A. (1997). Anticancer Res. 17, 247–251. CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazones have been extensively studied due to their wide range of actual or potential medical applications which include notably antiparasital (Du et al., 2002) and antitumor activities (Papageorgiou et al. 1997). In this work we have synthesized and crystallized a new thiosemicarbazone (I). Fig(1)
The molecule in the crystal adopt a semi-closed conformation, similiar to the structure reported by Ng (1992) [CSDRefcode: JUBMAU] .The values of distances N–N length (1.380 (2) Å.) and the dihedral angle C═ N—N—C (177.2 (2) °) are similar to those found in CSD (Allen, 2002) for thiosemicarbazone systems [selected 371 hits, average distance N—N is 1.374Å and mean dihedral angle is 178.21 °].
In the crystal packing the strong interactions are stablished between acid group and thiosemicarbazone moiety through N(2)—H(2N)···O(2) and O(1)—H(1O)···S(1). There is one additional intermolecular hydrogen C(5)—H(5a)···O(2) interaction. These three interactions form a R22(8) and a R12(7) rings (Bernstein et al., 1995) as shown in Fig (2). The molecules linked in this way form a zig-zag chain crystallograhycally related by c-glide plane shown in Fig (3). An intramolecular N(3)—H(3N)···N(1) hydrogen bond is also present. (Table 1).