organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1945-o1946

1-(4-Carb­­oxy­butan-2-yl­­idene)-4-phenyl­thio­semicarbazide

aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo - CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 9 May 2012; accepted 24 May 2012; online 31 May 2012)

The mol­ecule of the title compound, C12H15N3O2S, which belongs to the family of thio­semicarbazones, containing an acid group, adopts a semi-closed conformation with an intramolecular N—H⋯N hydrogen bond. In the crystal, molecules are linked by strong N—H⋯O and O—H⋯S hydrogen bonds between the acid group and thiosemicarbazone unit, with one additional intermolecular hydrogen C—H⋯O interaction. These three interactions form R22(8) and a R21(7) rings and the molecules related by the c-glide plane are linked into a zigzag chain along [001].

Related literature

For related compounds and their biological activity, see: Ng (1992[Ng, S. W. (1992). Acta Cryst. C48, 2057-2058.]); Papageorgiou et al. (1997[Papageorgiou, A., Iakovidou, Z., Mourelatos, D., Mioglou, E., Boutis, L., Kotsis, A., Kovala-Demertzi, D., Domopoulou, A., West, D. X. & Demertzis, M. A. (1997). Anticancer Res. 17, 247-251.]); Du et al. (2002[Du, X., Guo, C., Hansel, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrow, J. H. & Cohen, F. E. (2002). J. Med. Chem. 45, 2695-2707.]). For a description of the Cambridge Crystallographic Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N3O2S

  • Mr = 265.33

  • Monoclinic, P 21 /c

  • a = 11.2812 (4) Å

  • b = 9.3450 (4) Å

  • c = 13.4120 (5) Å

  • β = 104.176 (3)°

  • V = 1370.87 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.10 mm−1

  • T = 293 K

  • 0.26 × 0.18 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.])Tmin = 0.907, Tmax = 1.000

  • 12283 measured reflections

  • 2601 independent reflections

  • 2294 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.05

  • 2601 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N1 0.81 (2) 2.06 (2) 2.547 (2) 118.1 (19)
N2—H2N⋯O2i 0.83 (2) 2.19 (2) 3.013 (2) 174 (2)
C5—H5A⋯O2i 0.96 2.23 3.184 (3) 174
O1—H1O⋯S1ii 0.92 (3) 2.24 (3) 3.1600 (17) 174 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazones have been extensively studied due to their wide range of actual or potential medical applications which include notably antiparasital (Du et al., 2002) and antitumor activities (Papageorgiou et al. 1997). In this work we have synthesized and crystallized a new thiosemicarbazone (I). Fig(1)

The molecule in the crystal adopt a semi-closed conformation, similiar to the structure reported by Ng (1992) [CSDRefcode: JUBMAU] .The values of distances N–N length (1.380 (2) Å.) and the dihedral angle C N—N—C (177.2 (2) °) are similar to those found in CSD (Allen, 2002) for thiosemicarbazone systems [selected 371 hits, average distance N—N is 1.374Å and mean dihedral angle is 178.21 °].

In the crystal packing the strong interactions are stablished between acid group and thiosemicarbazone moiety through N(2)—H(2N)···O(2) and O(1)—H(1O)···S(1). There is one additional intermolecular hydrogen C(5)—H(5a)···O(2) interaction. These three interactions form a R22(8) and a R12(7) rings (Bernstein et al., 1995) as shown in Fig (2). The molecules linked in this way form a zig-zag chain crystallograhycally related by c-glide plane shown in Fig (3). An intramolecular N(3)—H(3N)···N(1) hydrogen bond is also present. (Table 1).

Related literature top

For related compounds and their biological activity, see: Ng (1992); Papageorgiou et al. (1997); Du et al. (2002). For a description of the Cambridge Crystallographic Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of levulinic acid (1.1612 g, 0.01 mol) and 4-phenylsemicarbazide (1.6723 g, 0.01 mol) in absolute methanol (50 ml) was refluxed for 1 h in the presence of p-toluenesulfonic acid as catalyst, with continuous stirring. On cooling to room temperature the precipitate was filtered off, washed with copious cold methanol and dried in air. White single crystals of compound (I) were obtained after recrystallization from a solution in methanol.

Refinement top

The NH ,CH2 and OH H-atoms were found in difference Fourier maps and were freely refined: N2—H = 0.83 (2) Å, N3—H = 0.81 (2) Å , C3—H=0.97 (2) Å, C2—H(2A)=0.94 (2) Å, C2—H(2B)=0.98 (2) Å and O(2)—H=0.92 (3) Å. All other C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å for aromatic CH with Uiso(H) = 1.2 × Ueq(C) and CH3 with Uiso(H) = 1.5 × Ueq(C). At the end of the refinement the highest peak in the electron density was 0.301 eÅ -3, while the deepest hole was -0.283 eÅ -3.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999), PLATON (Spek, 2003), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010)..

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Principal intermolecular and intramolecular hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. Packing diagram viewed along the c axis , showing the zig-zag chains. Hydrogen bonds are indicated by dashed lines.
1-(4-Carboxybutan-2-ylidene)-4-phenylthiosemicarbazide top
Crystal data top
C12H15N3O2SF(000) = 560
Mr = 265.33Dx = 1.286 Mg m3
Monoclinic, P21/cMelting point: 437 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54180 Å
a = 11.2812 (4) ÅCell parameters from 6997 reflections
b = 9.3450 (4) Åθ = 3.4–70.4°
c = 13.4120 (5) ŵ = 2.10 mm1
β = 104.176 (3)°T = 293 K
V = 1370.87 (9) Å3Blocks, white
Z = 40.26 × 0.18 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2601 independent reflections
Radiation source: Enhance (Cu) X-ray Source2294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.2673 pixels mm-1θmax = 70.5°, θmin = 4.0°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1110
Tmin = 0.907, Tmax = 1.000l = 1616
12283 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.3083P]
where P = (Fo2 + 2Fc2)/3
2601 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H15N3O2SV = 1370.87 (9) Å3
Mr = 265.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.2812 (4) ŵ = 2.10 mm1
b = 9.3450 (4) ÅT = 293 K
c = 13.4120 (5) Å0.26 × 0.18 × 0.12 mm
β = 104.176 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2601 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
2294 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 1.000Rint = 0.027
12283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
2601 reflectionsΔρmin = 0.28 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78464 (4)0.25421 (5)0.48897 (3)0.05613 (18)
N20.99203 (13)0.17312 (16)0.44863 (11)0.0480 (3)
N11.05662 (12)0.10898 (15)0.38565 (10)0.0461 (3)
O10.95660 (14)0.02621 (17)0.13593 (12)0.0715 (4)
N30.82411 (14)0.10334 (16)0.32848 (12)0.0519 (4)
O21.10103 (15)0.19167 (18)0.15461 (11)0.0776 (5)
C41.17284 (14)0.11152 (18)0.40985 (12)0.0470 (4)
C70.70327 (15)0.08424 (18)0.26779 (12)0.0479 (4)
C60.86830 (14)0.17285 (17)0.41730 (12)0.0452 (4)
C51.25209 (18)0.1801 (3)0.50355 (15)0.0701 (6)
H5A1.20160.22070.54450.105*
H5B1.30020.25420.48320.105*
H5C1.30520.10940.54310.105*
C31.23533 (17)0.0414 (2)0.33614 (14)0.0549 (4)
C100.47481 (18)0.0357 (2)0.13805 (15)0.0642 (5)
H100.39790.01920.09490.077*
C80.60898 (17)0.1802 (2)0.26478 (15)0.0610 (5)
H80.62200.26170.30580.073*
C21.14856 (19)0.0293 (2)0.24553 (15)0.0587 (5)
C11.06851 (18)0.0751 (2)0.17557 (13)0.0563 (4)
C120.68317 (17)0.0348 (2)0.20479 (14)0.0567 (4)
H120.74640.09910.20590.068*
C90.49515 (18)0.1538 (2)0.20007 (16)0.0662 (5)
H90.43140.21750.19880.079*
C110.56902 (19)0.0583 (2)0.14005 (15)0.0657 (5)
H110.55590.13840.09760.079*
H2A1.1951 (19)0.075 (2)0.2050 (16)0.064 (6)*
H2B1.097 (2)0.101 (2)0.2673 (17)0.073 (6)*
H3B1.2903 (19)0.032 (2)0.3704 (16)0.065 (6)*
H3A1.2844 (18)0.113 (2)0.3127 (15)0.059 (5)*
H2N1.027 (2)0.208 (2)0.5052 (18)0.064 (6)*
H3N0.879 (2)0.068 (2)0.3071 (17)0.063 (6)*
H1O0.910 (3)0.096 (3)0.096 (2)0.108 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0539 (3)0.0688 (3)0.0476 (3)0.00688 (19)0.0162 (2)0.00087 (18)
N20.0457 (7)0.0563 (8)0.0410 (7)0.0005 (6)0.0085 (6)0.0048 (6)
N10.0467 (7)0.0504 (8)0.0409 (7)0.0020 (6)0.0098 (6)0.0004 (6)
O10.0667 (9)0.0708 (9)0.0701 (9)0.0106 (7)0.0035 (7)0.0069 (7)
N30.0431 (7)0.0569 (9)0.0541 (8)0.0008 (6)0.0089 (6)0.0107 (7)
O20.0800 (9)0.0864 (10)0.0576 (8)0.0231 (8)0.0000 (7)0.0237 (7)
C40.0462 (8)0.0525 (9)0.0412 (8)0.0028 (7)0.0082 (7)0.0048 (7)
C70.0449 (8)0.0520 (9)0.0460 (8)0.0054 (7)0.0094 (7)0.0010 (7)
C60.0478 (8)0.0430 (8)0.0445 (8)0.0002 (6)0.0108 (7)0.0046 (6)
C50.0507 (10)0.1051 (17)0.0524 (10)0.0135 (11)0.0089 (8)0.0109 (10)
C30.0501 (9)0.0641 (11)0.0519 (10)0.0064 (8)0.0155 (8)0.0066 (8)
C100.0520 (10)0.0791 (13)0.0556 (11)0.0102 (9)0.0019 (8)0.0004 (9)
C80.0509 (10)0.0628 (11)0.0649 (11)0.0019 (8)0.0055 (8)0.0107 (9)
C20.0680 (12)0.0591 (11)0.0523 (10)0.0051 (9)0.0209 (9)0.0045 (8)
C10.0647 (11)0.0649 (11)0.0406 (8)0.0051 (9)0.0153 (8)0.0021 (8)
C120.0564 (10)0.0564 (10)0.0551 (10)0.0000 (8)0.0095 (8)0.0052 (8)
C90.0504 (10)0.0776 (13)0.0657 (12)0.0048 (9)0.0049 (9)0.0022 (10)
C110.0677 (12)0.0672 (12)0.0569 (11)0.0104 (9)0.0052 (9)0.0117 (9)
Geometric parameters (Å, º) top
S1—C61.6843 (17)C5—H5C0.9600
N2—C61.356 (2)C3—C21.513 (3)
N2—N11.3802 (19)C3—H3B0.97 (2)
N2—H2N0.83 (2)C3—H3A0.97 (2)
N1—C41.271 (2)C10—C91.367 (3)
O1—C11.325 (2)C10—C111.374 (3)
O1—H1O0.92 (3)C10—H100.9300
N3—C61.341 (2)C8—C91.385 (3)
N3—C71.418 (2)C8—H80.9300
N3—H3N0.81 (2)C2—C11.494 (3)
O2—C11.205 (2)C2—H2A0.94 (2)
C4—C51.496 (2)C2—H2B0.98 (2)
C4—C31.498 (2)C12—C111.383 (3)
C7—C121.381 (3)C12—H120.9300
C7—C81.384 (3)C9—H90.9300
C5—H5A0.9600C11—H110.9300
C5—H5B0.9600
C6—N2—N1117.86 (14)C2—C3—H3A110.4 (12)
C6—N2—H2N120.3 (15)H3B—C3—H3A107.1 (17)
N1—N2—H2N121.8 (15)C9—C10—C11119.38 (18)
C4—N1—N2120.11 (14)C9—C10—H10120.3
C1—O1—H1O110.1 (18)C11—C10—H10120.3
C6—N3—C7131.84 (16)C7—C8—C9119.39 (18)
C6—N3—H3N111.3 (15)C7—C8—H8120.3
C7—N3—H3N116.9 (15)C9—C8—H8120.3
N1—C4—C5126.09 (16)C1—C2—C3113.05 (16)
N1—C4—C3116.48 (15)C1—C2—H2A105.5 (13)
C5—C4—C3117.42 (15)C3—C2—H2A108.5 (12)
C12—C7—C8119.60 (16)C1—C2—H2B108.7 (13)
C12—C7—N3116.31 (16)C3—C2—H2B112.0 (13)
C8—C7—N3124.00 (16)H2A—C2—H2B108.9 (18)
N3—C6—N2114.00 (15)O2—C1—O1122.19 (18)
N3—C6—S1125.96 (13)O2—C1—C2124.43 (18)
N2—C6—S1120.04 (12)O1—C1—C2113.37 (17)
C4—C5—H5A109.5C7—C12—C11120.02 (18)
C4—C5—H5B109.5C7—C12—H12120.0
H5A—C5—H5B109.5C11—C12—H12120.0
C4—C5—H5C109.5C10—C9—C8121.13 (19)
H5A—C5—H5C109.5C10—C9—H9119.4
H5B—C5—H5C109.5C8—C9—H9119.4
C4—C3—C2113.87 (15)C10—C11—C12120.47 (19)
C4—C3—H3B110.5 (12)C10—C11—H11119.8
C2—C3—H3B106.5 (13)C12—C11—H11119.8
C4—C3—H3A108.3 (12)
C6—N2—N1—C4177.24 (15)C12—C7—C8—C91.3 (3)
N2—N1—C4—C50.2 (3)N3—C7—C8—C9177.77 (18)
N2—N1—C4—C3179.00 (15)C4—C3—C2—C166.2 (2)
C6—N3—C7—C12155.39 (18)C3—C2—C1—O237.4 (3)
C6—N3—C7—C828.0 (3)C3—C2—C1—O1143.94 (17)
C7—N3—C6—N2176.52 (17)C8—C7—C12—C110.7 (3)
C7—N3—C6—S14.0 (3)N3—C7—C12—C11177.45 (17)
N1—N2—C6—N32.5 (2)C7—C8—C9—C101.0 (3)
N1—N2—C6—S1177.98 (11)C9—C10—C11—C120.6 (3)
N1—C4—C3—C23.1 (2)C7—C12—C11—C100.2 (3)
C5—C4—C3—C2178.08 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N10.81 (2)2.06 (2)2.547 (2)118.1 (19)
N2—H2N···O2i0.83 (2)2.19 (2)3.013 (2)174 (2)
C5—H5A···O2i0.962.233.184 (3)174
O1—H1O···S1ii0.92 (3)2.24 (3)3.1600 (17)174 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H15N3O2S
Mr265.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.2812 (4), 9.3450 (4), 13.4120 (5)
β (°) 104.176 (3)
V3)1370.87 (9)
Z4
Radiation typeCu Kα
µ (mm1)2.10
Crystal size (mm)0.26 × 0.18 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax0.907, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12283, 2601, 2294
Rint0.027
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.05
No. of reflections2601
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX publication routines (Farrugia, 1999), PLATON (Spek, 2003), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010)..

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N10.81 (2)2.06 (2)2.547 (2)118.1 (19)
N2—H2N···O2i0.83 (2)2.19 (2)3.013 (2)174 (2)
C5—H5A···O2i0.962.233.184 (3)173.6
O1—H1O···S1ii0.92 (3)2.24 (3)3.1600 (17)174 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

Financial support was given by the Agencia Española de Cooperación Inter­nacional y Desarrollo (AECID), FEDER funding, the Spanish MINECO (MAT2006–01997, MAT2010-15094 and the Factoría de Cristalización Consolider Ingenio-2010) and the Gobierno del Principado de Asturias (FICYT).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDu, X., Guo, C., Hansel, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrow, J. H. & Cohen, F. E. (2002). J. Med. Chem. 45, 2695–2707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNg, S. W. (1992). Acta Cryst. C48, 2057–2058.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPapageorgiou, A., Iakovidou, Z., Mourelatos, D., Mioglou, E., Boutis, L., Kotsis, A., Kovala-Demertzi, D., Domopoulou, A., West, D. X. & Demertzis, M. A. (1997). Anticancer Res. 17, 247–251.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1945-o1946
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds