organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Methyl­phen­yl)-1-(1,3-thia­zol-2-yl)prop-2-en-1-one

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, and bDepartment of Image Science and Engineering, Pukyong National University, Busan 608 737, Republic of Korea
*Correspondence e-mail: synorgramu@gmail.com

(Received 20 February 2012; accepted 1 May 2012; online 26 May 2012)

In the title chalcone, C13H11NOS, derived from the condensation of p-tolualdehyde and 1-(1,3-thia­zol-2-yl)ethanone, the olefine group has a trans configuration. No classical hydrogen bonding is present in the crystal structure.

Related literature

For background to thia­zoles, see: Fontecave et al. (2003[Fontecave, M., Ollagnier-de-Choudens, S. & Mulliez, E. (2003). Chem. Rev. 103, 2149-2166.]); Kleemann et al. (2001[Kleemann, A., Engel, J., Kutscher, B. & Reichert, D. (2001). Pharmaceutical Substances, 4th ed. Stuttgart: Thieme.]) and for their biological activity, see: Bharti et al. (2010[Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651-660.]); Bell et al. (1995[Bell, F. W., Cantrell, A. S., Hogberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M., Noreen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, P., Sahlberg, C., Ternansky, R. J., Vasileff, R. T., Vrang, L., West, S. J., Zhang, H. & Zhou, X. X. (1995). J. Med. Chem. 38, 4929-4936.]); Cortes et al. (2007[Cortes, J., Rousselot, P., Kim, D. W., Ritchie, E., Hamerschlak, N., Coutre, S., Hochhaus, A., Guilhot, F., Saglio, G., Apperley, J., Ottmann, O., Shah, N., Erben, P., Branford, S., Agarwal, P., Gollerkeri, A. & Baccarani, M. (2007). Blood, 109, 3207-3213.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NOS

  • Mr = 229.29

  • Monoclinic, P 21 /c

  • a = 13.9486 (9) Å

  • b = 11.1773 (8) Å

  • c = 7.4579 (5) Å

  • β = 102.061 (4)°

  • V = 1137.08 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.949

  • 10320 measured reflections

  • 2808 independent reflections

  • 2070 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.05

  • 2808 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Molecules which possess both sulphur and nitrogen atoms exhibit universal and crucial roles in living organisms (Fontecave et al., 2003), with thiazoles and their derivatives being an important class of heterocyclic compounds (Kleemann et al., 2001). Analogues of these are present in several drugs with a wide range of biological properties, such as antibacterial (Bharti et al., 2010), antiviral (Bell et al., 1995) and anticancer (Cortes et al., 2007). Our research has been focused towards finding new therapeutic agents, using thiazole compounds. Similarly, several α,β-unsaturated ketones have been found to have good biological activity. Therefore, in this paper we report both the thiazole and α,β-unsaturated ketone moieties in one molecule. The title compound (Fig. 1) exists in an E configuration with respect to the C7-C8 double bond. Both phenyl and thiazole rings adopt planar orientations and there is no classical hydrogen bonding found.

Related literature top

For background to thiazoles, see: Fontecave et al. (2003); Kleemann et al. (2001) and for their biological activity, see: Bharti, et al. (2010); Bell et al. (1995); Cortes et al. (2007).

Experimental top

To an aqueous ethanolic solution of p-tolualdehyde (0.01 mol) and 2-acetylthiazole (0.01 mol), a sodium hydroxide solution was added slowly and stirred until a precipitate formed. The obtained solid was filtered and washed well with water. Single crystals were grown by the slow evaporation technique using ethanol as solvent.

Refinement top

H-atoms were positioned and refined using a riding model, with aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97 Å and amino N—H = 0.83 and 0.94 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The ORTEP representation of title compound showing the atom numbering scheme and ellipsoids at the 50% probability level.
(E)-3-(4-Methylphenyl)-1-(1,3-thiazol-2-yl)prop-2-en-1-one top
Crystal data top
C13H11NOSZ = 4
Mr = 229.29F(000) = 480
Monoclinic, P21/cDx = 1.339 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.9486 (9) ŵ = 0.26 mm1
b = 11.1773 (8) ÅT = 293 K
c = 7.4579 (5) ÅPrism, colorless
β = 102.061 (4)°0.20 × 0.20 × 0.20 mm
V = 1137.08 (13) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2808 independent reflections
Radiation source: fine-focus sealed tube2070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scanθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1817
Tmin = 0.949, Tmax = 0.949k = 1114
10320 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.1832P]
where P = (Fo2 + 2Fc2)/3
2808 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H11NOSV = 1137.08 (13) Å3
Mr = 229.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9486 (9) ŵ = 0.26 mm1
b = 11.1773 (8) ÅT = 293 K
c = 7.4579 (5) Å0.20 × 0.20 × 0.20 mm
β = 102.061 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2808 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2070 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.949Rint = 0.027
10320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
2808 reflectionsΔρmin = 0.24 e Å3
153 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98502 (3)0.17057 (5)1.16674 (6)0.05963 (18)
O10.82353 (10)0.00430 (12)1.0300 (2)0.0721 (4)
N10.84607 (10)0.31056 (13)1.0198 (2)0.0540 (4)
C10.53219 (10)0.08303 (13)0.72422 (19)0.0380 (3)
C70.62986 (11)0.05556 (15)0.8309 (2)0.0425 (3)
C40.34124 (11)0.13769 (15)0.5336 (2)0.0451 (4)
C100.86817 (11)0.19796 (15)1.0453 (2)0.0440 (4)
C20.51393 (11)0.18190 (13)0.6090 (2)0.0420 (3)
H20.56570.23090.59480.050*
C80.70403 (11)0.13124 (16)0.8719 (2)0.0471 (4)
C30.42049 (11)0.20835 (15)0.5155 (2)0.0458 (4)
H30.41020.27480.43880.055*
C60.45308 (11)0.01025 (14)0.7382 (2)0.0451 (4)
H60.46350.05780.81130.054*
C90.79948 (11)0.09785 (15)0.9842 (2)0.0476 (4)
C50.35920 (12)0.03767 (15)0.6448 (2)0.0497 (4)
H50.30740.01190.65700.060*
C130.23967 (13)0.16866 (19)0.4303 (3)0.0681 (5)
H4C0.24210.24050.36080.102*
H4A0.19770.18090.51560.102*
H4B0.21450.10430.34870.102*
C120.92396 (14)0.37879 (19)1.1005 (3)0.0646 (5)
H120.92160.46191.09660.078*
C111.00462 (14)0.31959 (19)1.1861 (3)0.0622 (5)
H111.06250.35541.24690.075*
H70.6378 (13)0.0218 (18)0.877 (2)0.059 (5)*
H80.6995 (14)0.2095 (18)0.835 (3)0.066 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0395 (2)0.0771 (4)0.0562 (3)0.0054 (2)0.00395 (18)0.0080 (2)
O10.0545 (7)0.0519 (8)0.1003 (11)0.0082 (6)0.0058 (7)0.0108 (7)
N10.0422 (7)0.0531 (9)0.0628 (9)0.0023 (6)0.0019 (6)0.0033 (7)
C10.0372 (7)0.0350 (7)0.0417 (7)0.0004 (6)0.0080 (6)0.0042 (6)
C70.0412 (8)0.0394 (8)0.0465 (8)0.0040 (6)0.0079 (6)0.0002 (7)
C40.0383 (7)0.0472 (9)0.0476 (8)0.0011 (6)0.0040 (6)0.0089 (7)
C100.0333 (7)0.0566 (9)0.0405 (8)0.0055 (7)0.0041 (6)0.0014 (7)
C20.0389 (7)0.0395 (8)0.0477 (8)0.0048 (6)0.0096 (6)0.0008 (6)
C80.0390 (8)0.0444 (9)0.0544 (9)0.0022 (7)0.0017 (7)0.0025 (7)
C30.0469 (8)0.0420 (8)0.0465 (8)0.0026 (7)0.0046 (6)0.0035 (7)
C60.0478 (8)0.0341 (8)0.0526 (9)0.0041 (6)0.0083 (7)0.0028 (7)
C90.0378 (7)0.0517 (10)0.0519 (9)0.0049 (7)0.0059 (6)0.0019 (7)
C50.0410 (8)0.0459 (9)0.0619 (10)0.0110 (7)0.0099 (7)0.0046 (7)
C130.0425 (9)0.0759 (13)0.0777 (13)0.0042 (9)0.0063 (9)0.0058 (10)
C120.0560 (10)0.0618 (12)0.0722 (12)0.0096 (9)0.0047 (9)0.0107 (10)
C110.0466 (9)0.0835 (14)0.0530 (10)0.0139 (9)0.0025 (8)0.0082 (9)
Geometric parameters (Å, º) top
S1—C111.689 (2)C2—C31.376 (2)
S1—C101.7185 (15)C2—H20.9300
O1—C91.219 (2)C8—C91.465 (2)
N1—C101.300 (2)C8—H80.92 (2)
N1—C121.360 (2)C3—H30.9300
C1—C21.390 (2)C6—C51.383 (2)
C1—C61.392 (2)C6—H60.9300
C1—C71.460 (2)C5—H50.9300
C7—C81.322 (2)C13—H4C0.9600
C7—H70.929 (19)C13—H4A0.9600
C4—C51.383 (2)C13—H4B0.9600
C4—C31.388 (2)C12—C111.346 (3)
C4—C131.505 (2)C12—H120.9300
C10—C91.482 (2)C11—H110.9300
C11—S1—C1089.32 (9)C4—C3—H3119.4
C10—N1—C12109.56 (16)C5—C6—C1120.99 (14)
C2—C1—C6117.70 (13)C5—C6—H6119.5
C2—C1—C7122.26 (13)C1—C6—H6119.5
C6—C1—C7120.03 (14)O1—C9—C8124.27 (16)
C8—C7—C1126.00 (15)O1—C9—C10119.91 (15)
C8—C7—H7118.9 (11)C8—C9—C10115.81 (14)
C1—C7—H7115.1 (11)C6—C5—C4120.98 (14)
C5—C4—C3118.03 (14)C6—C5—H5119.5
C5—C4—C13121.73 (16)C4—C5—H5119.5
C3—C4—C13120.21 (16)C4—C13—H4C109.5
N1—C10—C9124.58 (14)C4—C13—H4A109.5
N1—C10—S1114.79 (12)H4C—C13—H4A109.5
C9—C10—S1120.58 (12)C4—C13—H4B109.5
C3—C2—C1121.05 (14)H4C—C13—H4B109.5
C3—C2—H2119.5H4A—C13—H4B109.5
C1—C2—H2119.5C11—C12—N1116.45 (19)
C7—C8—C9122.88 (16)C11—C12—H12121.8
C7—C8—H8122.7 (12)N1—C12—H12121.8
C9—C8—H8114.4 (13)C12—C11—S1109.87 (15)
C2—C3—C4121.20 (15)C12—C11—H11125.1
C2—C3—H3119.4S1—C11—H11125.1
C2—C1—C7—C819.2 (2)C7—C1—C6—C5177.01 (15)
C6—C1—C7—C8159.68 (16)C7—C8—C9—O19.7 (3)
C12—N1—C10—C9176.99 (16)C7—C8—C9—C10169.19 (15)
C12—N1—C10—S10.58 (19)N1—C10—C9—O1172.68 (16)
C11—S1—C10—N10.65 (14)S1—C10—C9—O14.8 (2)
C11—S1—C10—C9177.02 (14)N1—C10—C9—C86.3 (2)
C6—C1—C2—C31.5 (2)S1—C10—C9—C8176.29 (12)
C7—C1—C2—C3177.40 (14)C1—C6—C5—C40.6 (2)
C1—C7—C8—C9178.32 (14)C3—C4—C5—C61.3 (2)
C1—C2—C3—C40.3 (2)C13—C4—C5—C6179.72 (16)
C5—C4—C3—C21.7 (2)C10—N1—C12—C110.2 (2)
C13—C4—C3—C2179.84 (16)N1—C12—C11—S10.3 (2)
C2—C1—C6—C52.0 (2)C10—S1—C11—C120.52 (15)

Experimental details

Crystal data
Chemical formulaC13H11NOS
Mr229.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.9486 (9), 11.1773 (8), 7.4579 (5)
β (°) 102.061 (4)
V3)1137.08 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.949, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
10320, 2808, 2070
Rint0.027
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.05
No. of reflections2808
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBell, F. W., Cantrell, A. S., Hogberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M., Noreen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, P., Sahlberg, C., Ternansky, R. J., Vasileff, R. T., Vrang, L., West, S. J., Zhang, H. & Zhou, X. X. (1995). J. Med. Chem. 38, 4929–4936.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651–660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCortes, J., Rousselot, P., Kim, D. W., Ritchie, E., Hamerschlak, N., Coutre, S., Hochhaus, A., Guilhot, F., Saglio, G., Apperley, J., Ottmann, O., Shah, N., Erben, P., Branford, S., Agarwal, P., Gollerkeri, A. & Baccarani, M. (2007). Blood, 109, 3207–3213.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFontecave, M., Ollagnier-de-Choudens, S. & Mulliez, E. (2003). Chem. Rev. 103, 2149–2166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKleemann, A., Engel, J., Kutscher, B. & Reichert, D. (2001). Pharmaceutical Substances, 4th ed. Stuttgart: Thieme.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds