organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-[(5,5-Di­methyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)­­oxy]-4-methyl-2H-chromen-2-one

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: xcyrz58@yahoo.com.cn

(Received 25 March 2012; accepted 23 May 2012; online 31 May 2012)

The title compound, C15H17O6P, was obtained from a reaction of 4-methyl-7-hy­droxy­coumarin and 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide. There are two mol­ecules in the asymmetric unit in which the benzopyran ring system is almost planar [r.m.s. deviation for each molecule = 0.003 Å]. In the crystal, C—H⋯O hydrogen bonds and ππ stacking inter­actions [with centroid–centroid distances of 3.743 (3) and 3.727 (3) Å] link the two mol­ecules. The dioxaphospho­rinane ring adopts a chair conformation in both asymmetric molecules.

Related literature

For the application of 4-methyl-7-hy­droxy­coumarin and 2-oxido-1,3,2-dioxaphosphinan derivatives, see: Babu et al.(2008[Babu, B. H., Prasad, G. S., Reddy, C. S. & Raju, C. N. (2008). Heteroatom. Chem. 19, 256-260.]); Li et al. (2002[Li, X., Ou, Y.-X. & Shi, Y. (2002). Polym. Degrad. Stab. 77, 383-390.], 2006[Li, Z.-Q., Sheng, X.-J., Zuo, N., Ren, Q.-Y. & He, H.-W. (2006). Acta Cryst. E62, o3501-o3502.]); Raghu & Reddy (1996[Raghu, K. V. & Reddy, C. D. (1996). Indian J. Chem. Sect. B, 35, 1228-1232.]); Sierosławski et al. (2006[Sierosławski, K., Ślepokura, K. & Lis, T. (2006). Acta Cryst. E62, m560-m562.]); Zhou et al. (2006[Zhou, X., Wang, X.-B. & Kong, L.-Y. (2006). Acta Cryst. C62, o58-o61.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17O6P

  • Mr = 324.26

  • Monoclinic, P 21 /c

  • a = 7.309 (4) Å

  • b = 17.010 (9) Å

  • c = 25.507 (13) Å

  • β = 102.596 (17)°

  • V = 3095 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.22 × 0.17 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.970

  • 16892 measured reflections

  • 6065 independent reflections

  • 2926 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.134

  • S = 1.00

  • 6065 reflections

  • 398 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.93 2.36 3.223 (5) 155
C13—H13B⋯O11ii 0.97 2.48 3.250 (5) 136
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-oxido-1,3,2-dioxaphosphinan and its derivatives exhibit high flame-retardance (Li et al., 2002; Li et al., 2006) as well as biological and pharmaceutical activity (Babu et al., 2008). Coumarin and its derivatives have a wide range of biological activities, and for years have received significant attention regarding natural and synthetic sources (Sierosławski et al., 2006; Zhou et al., 2006). Few crystal sructures containing both of these groups have been characterized. We report here the crystal structure of a new 2-chloro-1,3,2-dioxaphosphinane derivative containing the 7-oxy-4-methyl-2H-chromen-2-one group.

In the title compound, C15H17O6P, bond distances and angles in (I) are as expected, and the dioxaphosphinan ring adopts a chair conformation (Fig. 1). π-π stacking interactions and C—H···O hydrogen bonds link the molecules. (Table 1, Fig. 2)

Related literature top

For the application of 4-methyl-7-hydroxycoumarin and 2-oxido-1,3,2-dioxaphosphinan derivatives, see: Babu et al.(2008); Li et al. (2002); Li et al. (2006); Raghu & Reddy (1996); Sierosławski et al. (2006); Zhou et al. (2006).

Experimental top

The title compound was prepared according to the procedure of Raghu & Reddy (1996). The 4-methyl-7-hydroxycoumarin (0.95 g, 6.2 mmol), dry dichloromethane (10 ml) and triethylamine (0.61 g, 6 mmol) were placed in a 100 ml three-necked flask and a solution of 2-chloro-5,5-dimethyl- [1,3,2]dioxaphosphinane 2-oxide (1.12 g, 6.1 mmol) in dry dichloromethane (5 ml) was added dropwise over a period of 1 h at room temperature (298 K). The reaction temperature was raised to 308 K and stirring was continued for 8 h. The solvent was removed under reduced pressure and the residual mixture was washed with anhydrous ether (25 ml), dried and recrystallized from ethanol to give compound (I). Suitable crystals were obtained from a anhydrous methanol at room temperature (m.p. 440 K).

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.98 Å or 0.99 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The partial packing diagram of the title compound, hydrogen bonds and π-π interactions are indicated by dashed lines, with centroids indicated in blue.
7-[(5,5-Dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)oxy]-4-methyl-2H- chromen-2-one top
Crystal data top
C15H17O6PF(000) = 1360
Mr = 324.26Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.309 (4) ÅCell parameters from 1226 reflections
b = 17.010 (9) Åθ = 2.4–20.1°
c = 25.507 (13) ŵ = 0.20 mm1
β = 102.596 (17)°T = 293 K
V = 3095 (3) Å3Block, colorless
Z = 80.22 × 0.17 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
6065 independent reflections
Radiation source: fine-focus sealed tube2926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 97
Tmin = 0.957, Tmax = 0.970k = 2020
16892 measured reflectionsl = 2931
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
6065 reflectionsΔρmax = 0.24 e Å3
398 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (4)
Crystal data top
C15H17O6PV = 3095 (3) Å3
Mr = 324.26Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.309 (4) ŵ = 0.20 mm1
b = 17.010 (9) ÅT = 293 K
c = 25.507 (13) Å0.22 × 0.17 × 0.15 mm
β = 102.596 (17)°
Data collection top
Bruker APEXII CCD
diffractometer
6065 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2926 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.970Rint = 0.077
16892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
6065 reflectionsΔρmin = 0.23 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.16499 (15)0.36220 (5)0.60542 (4)0.0508 (3)
P20.55845 (14)0.45430 (5)0.91243 (4)0.0506 (3)
C10.1215 (5)0.49770 (19)0.65432 (12)0.0456 (9)
C20.1394 (4)0.57797 (18)0.65058 (12)0.0460 (9)
H2A0.15870.60080.61910.055*
C30.1282 (4)0.62402 (18)0.69453 (13)0.0435 (8)
C40.1021 (4)0.59221 (19)0.74286 (12)0.0411 (8)
C50.0811 (5)0.51023 (19)0.74467 (13)0.0485 (9)
H5A0.06150.48710.77600.058*
C60.0887 (5)0.46305 (18)0.70101 (13)0.0490 (9)
H6A0.07220.40900.70280.059*
C70.0929 (4)0.6455 (2)0.78687 (12)0.0452 (8)
C80.1078 (5)0.7232 (2)0.77870 (13)0.0515 (9)
H8A0.10270.75730.80690.062*
C90.1312 (5)0.7563 (2)0.72885 (15)0.0551 (10)
C110.0707 (5)0.6132 (2)0.84025 (13)0.0574 (10)
H11A0.06630.65580.86460.086*
H11B0.17520.57970.85480.086*
H11C0.04330.58340.83530.086*
C120.5251 (5)0.3759 (2)0.60956 (14)0.0607 (10)
H12A0.64430.35590.62950.073*
H12B0.52980.43290.61130.073*
C130.3071 (5)0.3804 (2)0.52109 (13)0.0526 (9)
H13A0.30790.43740.52190.063*
H13B0.28640.36400.48380.063*
C140.4956 (5)0.3501 (2)0.55123 (13)0.0530 (9)
C150.6481 (6)0.3882 (2)0.52679 (17)0.0873 (14)
H15A0.64040.44440.52940.131*
H15B0.63020.37330.48970.131*
H15C0.76920.37080.54600.131*
C160.5025 (6)0.2598 (2)0.54750 (16)0.0778 (12)
H16A0.40610.23740.56300.117*
H16B0.62270.24140.56660.117*
H16C0.48310.24440.51050.117*
C170.5687 (4)0.51941 (18)0.81753 (12)0.0419 (8)
C180.5652 (4)0.59612 (18)0.83640 (12)0.0437 (8)
H18A0.54960.60590.87100.052*
C190.5856 (4)0.65767 (18)0.80243 (13)0.0446 (8)
H19A0.58670.70900.81500.054*
C200.6046 (4)0.64455 (17)0.74978 (12)0.0386 (8)
C210.6056 (4)0.56604 (18)0.73303 (12)0.0401 (8)
C220.5888 (5)0.50344 (17)0.76621 (12)0.0421 (8)
H22A0.59100.45190.75420.051*
C240.6378 (5)0.6043 (2)0.64460 (15)0.0577 (10)
C250.6431 (5)0.6848 (2)0.66261 (14)0.0554 (10)
H25A0.65800.72410.63850.066*
C260.6277 (4)0.70635 (19)0.71221 (13)0.0452 (9)
C270.6342 (5)0.79147 (18)0.72920 (14)0.0632 (11)
H27A0.64970.82420.69980.095*
H27B0.73770.79940.75910.095*
H27C0.51940.80500.73950.095*
C280.7311 (5)0.32002 (18)0.91740 (14)0.0540 (10)
H28A0.73300.31800.87950.065*
H28B0.72290.26650.92980.065*
C290.9198 (5)0.44192 (19)0.92909 (14)0.0537 (10)
H29A1.03460.46660.94830.064*
H29B0.92100.44210.89110.064*
C300.9136 (5)0.35703 (19)0.94827 (13)0.0499 (9)
C311.0766 (5)0.3125 (2)0.93284 (17)0.0774 (12)
H31A1.06500.31530.89470.116*
H31B1.07360.25840.94350.116*
H31C1.19330.33570.95070.116*
C320.9275 (5)0.3540 (2)1.00886 (13)0.0672 (11)
H32A0.82410.38211.01750.101*
H32B1.04320.37771.02710.101*
H32C0.92400.30021.02010.101*
O10.1328 (3)0.45455 (12)0.60837 (8)0.0557 (7)
O20.0340 (4)0.31360 (13)0.62644 (10)0.0716 (8)
O30.3740 (3)0.34751 (13)0.63452 (8)0.0571 (7)
O40.1532 (3)0.35143 (12)0.54432 (8)0.0491 (6)
O50.1455 (3)0.70424 (12)0.68781 (9)0.0529 (6)
O60.1404 (4)0.82590 (15)0.71832 (11)0.0785 (9)
O70.7588 (3)0.48739 (12)0.93772 (8)0.0511 (6)
O80.5655 (3)0.36372 (12)0.92416 (9)0.0525 (6)
O90.4070 (4)0.49634 (15)0.92830 (10)0.0756 (8)
O100.5482 (3)0.45393 (12)0.84883 (8)0.0509 (6)
O110.6436 (4)0.58166 (15)0.59995 (10)0.0844 (9)
O120.6214 (3)0.54691 (12)0.68164 (8)0.0495 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0694 (7)0.0429 (6)0.0452 (6)0.0023 (5)0.0238 (5)0.0005 (4)
P20.0541 (7)0.0545 (6)0.0454 (6)0.0025 (5)0.0157 (5)0.0086 (5)
C10.050 (2)0.047 (2)0.042 (2)0.0073 (16)0.0148 (19)0.0021 (17)
C20.057 (2)0.042 (2)0.042 (2)0.0047 (16)0.0192 (19)0.0072 (16)
C30.043 (2)0.035 (2)0.054 (2)0.0004 (15)0.0168 (18)0.0011 (16)
C40.038 (2)0.047 (2)0.041 (2)0.0041 (15)0.0147 (17)0.0048 (16)
C50.052 (2)0.048 (2)0.049 (2)0.0069 (17)0.0200 (19)0.0110 (17)
C60.067 (3)0.0349 (19)0.050 (2)0.0038 (17)0.021 (2)0.0023 (16)
C70.037 (2)0.057 (2)0.044 (2)0.0050 (16)0.0134 (17)0.0032 (18)
C80.052 (2)0.052 (2)0.054 (2)0.0008 (17)0.018 (2)0.0106 (18)
C90.055 (3)0.047 (2)0.069 (3)0.0022 (19)0.026 (2)0.006 (2)
C110.055 (2)0.070 (3)0.050 (2)0.0107 (19)0.018 (2)0.0032 (19)
C120.063 (3)0.060 (2)0.056 (2)0.004 (2)0.006 (2)0.0031 (19)
C130.058 (3)0.059 (2)0.045 (2)0.0046 (18)0.020 (2)0.0057 (17)
C140.054 (2)0.059 (2)0.049 (2)0.0004 (19)0.016 (2)0.0016 (18)
C150.058 (3)0.118 (4)0.093 (3)0.013 (2)0.030 (3)0.012 (3)
C160.083 (3)0.072 (3)0.080 (3)0.017 (2)0.021 (3)0.014 (2)
C170.046 (2)0.040 (2)0.0402 (19)0.0004 (15)0.0101 (17)0.0040 (16)
C180.045 (2)0.051 (2)0.0354 (19)0.0023 (16)0.0078 (17)0.0046 (16)
C190.048 (2)0.037 (2)0.048 (2)0.0004 (15)0.0088 (18)0.0055 (16)
C200.038 (2)0.0365 (19)0.042 (2)0.0024 (15)0.0087 (16)0.0005 (16)
C210.042 (2)0.044 (2)0.0341 (19)0.0020 (15)0.0084 (17)0.0028 (15)
C220.052 (2)0.0331 (18)0.042 (2)0.0041 (15)0.0119 (18)0.0045 (15)
C240.060 (3)0.067 (3)0.048 (2)0.008 (2)0.016 (2)0.005 (2)
C250.054 (3)0.060 (3)0.050 (2)0.0088 (18)0.005 (2)0.0160 (19)
C260.043 (2)0.045 (2)0.047 (2)0.0002 (16)0.0068 (18)0.0094 (17)
C270.068 (3)0.042 (2)0.077 (3)0.0008 (18)0.011 (2)0.0127 (19)
C280.066 (3)0.039 (2)0.057 (2)0.0014 (18)0.013 (2)0.0092 (17)
C290.051 (2)0.052 (2)0.060 (2)0.0040 (18)0.017 (2)0.0068 (18)
C300.049 (2)0.047 (2)0.053 (2)0.0001 (17)0.0114 (19)0.0069 (18)
C310.064 (3)0.074 (3)0.094 (3)0.016 (2)0.018 (3)0.001 (2)
C320.077 (3)0.064 (3)0.055 (2)0.003 (2)0.004 (2)0.016 (2)
O10.0875 (19)0.0404 (14)0.0452 (14)0.0077 (12)0.0273 (14)0.0003 (11)
O20.097 (2)0.0596 (16)0.0728 (18)0.0196 (14)0.0503 (17)0.0021 (13)
O30.0720 (19)0.0574 (15)0.0420 (14)0.0101 (13)0.0128 (14)0.0058 (12)
O40.0529 (15)0.0597 (15)0.0375 (13)0.0065 (12)0.0159 (12)0.0056 (11)
O50.0698 (18)0.0399 (14)0.0554 (14)0.0002 (12)0.0278 (14)0.0014 (11)
O60.111 (2)0.0421 (16)0.093 (2)0.0051 (14)0.045 (2)0.0051 (14)
O70.0574 (16)0.0471 (14)0.0484 (14)0.0004 (12)0.0110 (13)0.0003 (11)
O80.0511 (15)0.0495 (14)0.0585 (15)0.0022 (12)0.0157 (13)0.0161 (12)
O90.072 (2)0.093 (2)0.0701 (18)0.0306 (15)0.0334 (16)0.0169 (15)
O100.0664 (17)0.0441 (14)0.0429 (13)0.0051 (11)0.0135 (13)0.0063 (11)
O110.129 (3)0.086 (2)0.0438 (16)0.0146 (18)0.0305 (18)0.0039 (15)
O120.0644 (17)0.0501 (14)0.0354 (13)0.0054 (12)0.0141 (12)0.0035 (11)
Geometric parameters (Å, º) top
P1—O21.453 (2)C15—H15C0.9600
P1—O41.553 (2)C16—H16A0.9600
P1—O31.566 (3)C16—H16B0.9600
P1—O11.593 (2)C16—H16C0.9600
P2—O91.447 (2)C17—C221.376 (4)
P2—O81.568 (2)C17—C181.393 (4)
P2—O71.570 (3)C17—O101.397 (3)
P2—O101.607 (2)C18—C191.388 (4)
C1—C21.377 (4)C18—H18A0.9300
C1—C61.396 (4)C19—C201.398 (4)
C1—O11.400 (3)C19—H19A0.9300
C2—C31.384 (4)C20—C211.403 (4)
C2—H2A0.9300C20—C261.457 (4)
C3—O51.384 (3)C21—O121.380 (3)
C3—C41.397 (4)C21—C221.382 (4)
C4—C51.405 (4)C22—H22A0.9300
C4—C71.456 (4)C24—O111.212 (4)
C5—C61.384 (4)C24—O121.382 (4)
C5—H5A0.9300C24—C251.442 (5)
C6—H6A0.9300C25—C261.345 (4)
C7—C81.347 (4)C25—H25A0.9300
C7—C111.510 (4)C26—C271.509 (4)
C8—C91.434 (4)C27—H27A0.9600
C8—H8A0.9300C27—H27B0.9600
C9—O61.220 (4)C27—H27C0.9600
C9—O51.392 (4)C28—O81.462 (4)
C11—H11A0.9600C28—C301.529 (5)
C11—H11B0.9600C28—H28A0.9700
C11—H11C0.9600C28—H28B0.9700
C12—O31.472 (4)C29—O71.465 (4)
C12—C141.521 (4)C29—C301.528 (4)
C12—H12A0.9700C29—H29A0.9700
C12—H12B0.9700C29—H29B0.9700
C13—O41.467 (3)C30—C321.527 (4)
C13—C141.514 (5)C30—C311.534 (4)
C13—H13A0.9700C31—H31A0.9600
C13—H13B0.9700C31—H31B0.9600
C14—C151.535 (4)C31—H31C0.9600
C14—C161.540 (5)C32—H32A0.9600
C15—H15A0.9600C32—H32B0.9600
C15—H15B0.9600C32—H32C0.9600
O2—P1—O4113.98 (14)H16A—C16—H16C109.5
O2—P1—O3112.79 (15)H16B—C16—H16C109.5
O4—P1—O3106.97 (12)C22—C17—C18121.8 (3)
O2—P1—O1115.32 (14)C22—C17—O10115.7 (3)
O4—P1—O1100.79 (12)C18—C17—O10122.5 (3)
O3—P1—O1105.91 (13)C19—C18—C17118.6 (3)
O9—P2—O8115.29 (14)C19—C18—H18A120.7
O9—P2—O7114.16 (16)C17—C18—H18A120.7
O8—P2—O7106.56 (13)C18—C19—C20121.7 (3)
O9—P2—O10114.46 (14)C18—C19—H19A119.1
O8—P2—O10100.43 (12)C20—C19—H19A119.1
O7—P2—O10104.48 (12)C19—C20—C21116.9 (3)
C2—C1—C6121.0 (3)C19—C20—C26124.5 (3)
C2—C1—O1116.0 (3)C21—C20—C26118.5 (3)
C6—C1—O1123.0 (3)O12—C21—C22115.9 (3)
C1—C2—C3118.8 (3)O12—C21—C20121.4 (3)
C1—C2—H2A120.6C22—C21—C20122.7 (3)
C3—C2—H2A120.6C17—C22—C21118.2 (3)
O5—C3—C2115.7 (3)C17—C22—H22A120.9
O5—C3—C4121.6 (3)C21—C22—H22A120.9
C2—C3—C4122.6 (3)O11—C24—O12116.3 (3)
C3—C4—C5116.8 (3)O11—C24—C25126.7 (3)
C3—C4—C7118.5 (3)O12—C24—C25117.0 (3)
C5—C4—C7124.7 (3)C26—C25—C24123.8 (3)
C6—C5—C4121.7 (3)C26—C25—H25A118.1
C6—C5—H5A119.2C24—C25—H25A118.1
C4—C5—H5A119.2C25—C26—C20117.9 (3)
C5—C6—C1119.1 (3)C25—C26—C27121.8 (3)
C5—C6—H6A120.4C20—C26—C27120.3 (3)
C1—C6—H6A120.4C26—C27—H27A109.5
C8—C7—C4118.2 (3)C26—C27—H27B109.5
C8—C7—C11121.7 (3)H27A—C27—H27B109.5
C4—C7—C11120.0 (3)C26—C27—H27C109.5
C7—C8—C9123.4 (3)H27A—C27—H27C109.5
C7—C8—H8A118.3H27B—C27—H27C109.5
C9—C8—H8A118.3O8—C28—C30112.4 (3)
O6—C9—O5115.8 (3)O8—C28—H28A109.1
O6—C9—C8126.8 (3)C30—C28—H28A109.1
O5—C9—C8117.5 (3)O8—C28—H28B109.1
C7—C11—H11A109.5C30—C28—H28B109.1
C7—C11—H11B109.5H28A—C28—H28B107.8
H11A—C11—H11B109.5O7—C29—C30111.7 (2)
C7—C11—H11C109.5O7—C29—H29A109.3
H11A—C11—H11C109.5C30—C29—H29A109.3
H11B—C11—H11C109.5O7—C29—H29B109.3
O3—C12—C14111.6 (3)C30—C29—H29B109.3
O3—C12—H12A109.3H29A—C29—H29B107.9
C14—C12—H12A109.3C32—C30—C29110.8 (3)
O3—C12—H12B109.3C32—C30—C28111.4 (3)
C14—C12—H12B109.3C29—C30—C28107.9 (3)
H12A—C12—H12B108.0C32—C30—C31111.0 (3)
O4—C13—C14111.9 (3)C29—C30—C31107.8 (3)
O4—C13—H13A109.2C28—C30—C31107.7 (3)
C14—C13—H13A109.2C30—C31—H31A109.5
O4—C13—H13B109.2C30—C31—H31B109.5
C14—C13—H13B109.2H31A—C31—H31B109.5
H13A—C13—H13B107.9C30—C31—H31C109.5
C13—C14—C12108.5 (3)H31A—C31—H31C109.5
C13—C14—C15108.1 (3)H31B—C31—H31C109.5
C12—C14—C15108.3 (3)C30—C32—H32A109.5
C13—C14—C16110.3 (3)C30—C32—H32B109.5
C12—C14—C16110.4 (3)H32A—C32—H32B109.5
C15—C14—C16111.1 (3)C30—C32—H32C109.5
C14—C15—H15A109.5H32A—C32—H32C109.5
C14—C15—H15B109.5H32B—C32—H32C109.5
H15A—C15—H15B109.5C1—O1—P1126.35 (19)
C14—C15—H15C109.5C12—O3—P1119.3 (2)
H15A—C15—H15C109.5C13—O4—P1119.1 (2)
H15B—C15—H15C109.5C3—O5—C9120.6 (3)
C14—C16—H16A109.5C29—O7—P2117.2 (2)
C14—C16—H16B109.5C28—O8—P2118.07 (19)
H16A—C16—H16B109.5C17—O10—P2125.89 (19)
C14—C16—H16C109.5C21—O12—C24121.4 (3)
C6—C1—C2—C31.3 (5)C19—C20—C26—C25179.6 (3)
O1—C1—C2—C3179.5 (3)C21—C20—C26—C252.0 (5)
C1—C2—C3—O5179.3 (3)C19—C20—C26—C270.5 (5)
C1—C2—C3—C40.9 (5)C21—C20—C26—C27177.9 (3)
O5—C3—C4—C5178.3 (3)O7—C29—C30—C3263.5 (4)
C2—C3—C4—C52.0 (5)O7—C29—C30—C2858.8 (4)
O5—C3—C4—C70.0 (5)O7—C29—C30—C31174.8 (3)
C2—C3—C4—C7179.8 (3)O8—C28—C30—C3264.7 (4)
C3—C4—C5—C60.9 (5)O8—C28—C30—C2957.2 (3)
C7—C4—C5—C6179.0 (3)O8—C28—C30—C31173.3 (3)
C4—C5—C6—C11.2 (5)C2—C1—O1—P1164.6 (2)
C2—C1—C6—C52.4 (5)C6—C1—O1—P117.3 (5)
O1—C1—C6—C5179.5 (3)O2—P1—O1—C154.0 (3)
C3—C4—C7—C80.8 (5)O4—P1—O1—C1177.2 (3)
C5—C4—C7—C8177.3 (3)O3—P1—O1—C171.5 (3)
C3—C4—C7—C11178.1 (3)C14—C12—O3—P150.7 (3)
C5—C4—C7—C113.8 (5)O2—P1—O3—C12164.3 (2)
C4—C7—C8—C90.4 (5)O4—P1—O3—C1238.2 (2)
C11—C7—C8—C9179.2 (3)O1—P1—O3—C1268.7 (2)
C7—C8—C9—O6177.8 (4)C14—C13—O4—P152.3 (3)
C7—C8—C9—O52.3 (5)O2—P1—O4—C13164.1 (2)
O4—C13—C14—C1258.6 (4)O3—P1—O4—C1338.8 (2)
O4—C13—C14—C15175.9 (3)O1—P1—O4—C1371.7 (2)
O4—C13—C14—C1662.5 (3)C2—C3—O5—C9178.2 (3)
O3—C12—C14—C1357.7 (4)C4—C3—O5—C92.1 (5)
O3—C12—C14—C15174.9 (3)O6—C9—O5—C3177.0 (3)
O3—C12—C14—C1663.3 (4)C8—C9—O5—C33.1 (5)
C22—C17—C18—C191.0 (5)C30—C29—O7—P255.6 (3)
O10—C17—C18—C19179.6 (3)O9—P2—O7—C29172.4 (2)
C17—C18—C19—C201.7 (5)O8—P2—O7—C2943.9 (2)
C18—C19—C20—C211.2 (5)O10—P2—O7—C2961.9 (2)
C18—C19—C20—C26179.6 (3)C30—C28—O8—P252.4 (3)
C19—C20—C21—O12179.2 (3)O9—P2—O8—C28170.1 (2)
C26—C20—C21—O122.3 (5)O7—P2—O8—C2842.3 (3)
C19—C20—C21—C220.0 (5)O10—P2—O8—C2866.3 (2)
C26—C20—C21—C22178.5 (3)C22—C17—O10—P2168.6 (2)
C18—C17—C22—C210.1 (5)C18—C17—O10—P212.7 (4)
O10—C17—C22—C21178.7 (3)O9—P2—O10—C1766.6 (3)
O12—C21—C22—C17178.7 (3)O8—P2—O10—C17169.3 (2)
C20—C21—C22—C170.6 (5)O7—P2—O10—C1759.0 (3)
O11—C24—C25—C26176.9 (4)C22—C21—O12—C24179.6 (3)
O12—C24—C25—C261.9 (5)C20—C21—O12—C240.3 (5)
C24—C25—C26—C200.1 (5)O11—C24—O12—C21177.2 (3)
C24—C25—C26—C27180.0 (3)C25—C24—O12—C211.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.932.363.223 (5)155
C13—H13B···O11ii0.972.483.250 (5)136
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H17O6P
Mr324.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.309 (4), 17.010 (9), 25.507 (13)
β (°) 102.596 (17)
V3)3095 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.22 × 0.17 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.957, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
16892, 6065, 2926
Rint0.077
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.134, 1.00
No. of reflections6065
No. of parameters398
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.932.363.223 (5)155
C13—H13B···O11ii0.972.483.250 (5)136
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province Education Department, China (grant No. 2011 A150027).

References

First citationBabu, B. H., Prasad, G. S., Reddy, C. S. & Raju, C. N. (2008). Heteroatom. Chem. 19, 256–260.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X., Ou, Y.-X. & Shi, Y. (2002). Polym. Degrad. Stab. 77, 383–390.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z.-Q., Sheng, X.-J., Zuo, N., Ren, Q.-Y. & He, H.-W. (2006). Acta Cryst. E62, o3501–o3502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaghu, K. V. & Reddy, C. D. (1996). Indian J. Chem. Sect. B, 35, 1228–1232.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSierosławski, K., Ślepokura, K. & Lis, T. (2006). Acta Cryst. E62, m560–m562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, X., Wang, X.-B. & Kong, L.-Y. (2006). Acta Cryst. C62, o58–o61.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds