organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Phenyl-4,5-di­aza-9H-fluoren-9-ol monohydrate

aDepartment of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, 471023 Luoyang, People's Republic of China, and bChemistry Department, Zhengzhou University, 450052 Zhengzhou, People's Republic of China
*Correspondence e-mail: yinguojie000000@yahoo.com.cn

(Received 30 March 2012; accepted 15 May 2012; online 19 May 2012)

The title compound, C17H12N2O·H2O, was synthesized by the reaction of 4,5-diaza­fluoren-9-one with a Grignard reagent in ether (the reaction mixture being hydrolysed with saturated NH4Cl solution), and crystallizes with two organic mol­ecules and two water mol­ecules in the asymmetric unit. The 4,5-diaza­fluorene fragment is approximately planar, with r.m.s. deviations of 0.0448 and 0.0198 Å in the two mol­ecules. The dihedral angles between the 4,5-diaza­fluorene planes and the phenyl ring are 80.49 (6) and 76.57 (7)°. The crystal packing features O—H⋯N and O—H⋯O hydrogen bonds involving the bridging solvent water mol­ecules, which link the mol­ecules into a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Wong et al. (2001[Wong, K. T., Wang, Z. J., Chien, Y. Y. & Wang, C. L. (2001). Org. Lett. 15, 1037-1043.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N2O·H2O

  • Mr = 278.30

  • Triclinic, [P \overline 1]

  • a = 8.8703 (13) Å

  • b = 9.1691 (18) Å

  • c = 18.643 (3) Å

  • α = 86.745 (14)°

  • β = 86.943 (12)°

  • γ = 67.798 (16)°

  • V = 1400.8 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 291 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.848, Tmax = 0.871

  • 10727 measured reflections

  • 4893 independent reflections

  • 3755 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.151

  • S = 1.04

  • 4893 reflections

  • 375 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 1.85 2.668 (2) 173
O3—H3A⋯O4i 0.82 1.89 2.705 (2) 174
O4—H4B⋯N3ii 0.85 2.01 2.839 (2) 164
O2—H2B⋯N2iii 0.85 1.91 2.749 (2) 171
Symmetry codes: (i) x, y, z-1; (ii) -x, -y, -z+1; (iii) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, containing two N atoms and a hydroxyl group, is a valuable intermediate in the preparation of medicinal compounds and an important ligand for the synthesis of functional metal-organic frameworks (MOFS). It was synthesized utilising a Grignard reagent to produce the target compound according to a literature reaction (Wong et al., 2001).

The title compound crystallizes with two molecules in the asymmetric unit, as shown in Fig. 1. Moreover, the 4,5-diazafluorene fragment is approximately planar, with r.m.s. deviations of 0.0448 Å and 0.0198 Å, respectively, and the dihedral angle between the 4,5-diazafluorene plane and the phenyl fragment are 80.49 (6)° and 76.57 (7)°. As shown in Fig. 2, due to the existence of the bridging solvent water molecules the crystal packing is stabilized through O—H···N and O—H···O hydrogen bonds, which link the molecules into a three-dimensional network.

Related literature top

For the synthesis of the title compound, see: Wong et al. (2001).

Experimental top

Reagents and solvents were of commercially available quality and the synthetic route (Wong et al., 2001) to the title compound is shown in Fig. 3. The Grignard reagents were prepared from magnesium powder (0.486 g, 20 mmol) in Et2O (5 ml) and the corresponding arylbromide (20 mmol) in Et2O (15 ml). The cooled Grignard solution was diluted with dry Et2O (20 ml) and 4,5-diazafluoren-9-one (1.82 g, 10 mmol) was added to the Grignard solution. The mixture was refluxed for 2–6 h and then stirred for another 2 h at room temperature. The reaction mixture, was hydrolyzed with saturated NH4Cl solution, extracted with Et2O, washed with brine, dried over MgSO4. Evaporation of the solvent under reduced pressure yielded the crude product. Purification was effected by column chromatography (SiO2, EtOAc/Hexane = 1/5) and recrystallization from CH2Cl2 and hexane yielded colorless crystal.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The water H-atoms were located in a difference Fourier map, but were refined utilising the riding model with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O). The highest difference density of 0.629 e Å-3 is 1.20 Å from O2.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the b axis, with hydrogen bonding shown as dashed lines.
[Figure 3] Fig. 3. The synthetic route to the title compound.
9-Phenyl-4,5-diaza-9H-fluoren-9-ol monohydrate top
Crystal data top
C17H12N2O·H2OZ = 4
Mr = 278.30F(000) = 584
Triclinic, P1Dx = 1.320 Mg m3
a = 8.8703 (13) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.1691 (18) Åθ = 0.9–0.9°
c = 18.643 (3) ŵ = 0.71 mm1
α = 86.745 (14)°T = 291 K
β = 86.943 (12)°Prismatic, colorless
γ = 67.798 (16)°0.24 × 0.22 × 0.20 mm
V = 1400.8 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4893 independent reflections
Radiation source: fine-focus sealed tube3755 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 66.6°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.848, Tmax = 0.871k = 109
10727 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.165P]
where P = (Fo2 + 2Fc2)/3
4893 reflections(Δ/σ)max < 0.001
375 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C17H12N2O·H2Oγ = 67.798 (16)°
Mr = 278.30V = 1400.8 (4) Å3
Triclinic, P1Z = 4
a = 8.8703 (13) ÅCu Kα radiation
b = 9.1691 (18) ŵ = 0.71 mm1
c = 18.643 (3) ÅT = 291 K
α = 86.745 (14)°0.24 × 0.22 × 0.20 mm
β = 86.943 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4893 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3755 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.871Rint = 0.034
10727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.04Δρmax = 0.63 e Å3
4893 reflectionsΔρmin = 0.37 e Å3
375 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57816 (17)0.33453 (18)0.42450 (9)0.0548 (4)
H1A0.59080.25250.44790.082*
O30.2007 (2)0.3172 (2)0.04084 (9)0.0590 (4)
H3A0.17080.29430.00370.089*
N40.1757 (2)0.0898 (2)0.10802 (11)0.0527 (4)
N11.1101 (2)0.0146 (2)0.37662 (12)0.0560 (5)
C120.7024 (2)0.4852 (2)0.35363 (12)0.0469 (5)
N21.1083 (2)0.1802 (2)0.50497 (11)0.0550 (5)
C60.9881 (2)0.2098 (2)0.45896 (12)0.0470 (5)
C50.9891 (2)0.1169 (2)0.39702 (12)0.0465 (5)
N30.1634 (2)0.1697 (2)0.07988 (11)0.0535 (4)
C220.1298 (2)0.0174 (2)0.08946 (11)0.0461 (5)
C110.7318 (2)0.3365 (2)0.40160 (12)0.0466 (5)
C40.8405 (2)0.1867 (2)0.36401 (12)0.0477 (5)
C240.0120 (2)0.2490 (2)0.10714 (11)0.0452 (4)
C230.0324 (2)0.1074 (2)0.10219 (11)0.0451 (4)
C70.8388 (2)0.3341 (2)0.46360 (11)0.0453 (4)
C280.1679 (2)0.2274 (2)0.09947 (12)0.0474 (5)
C270.3054 (3)0.2230 (3)0.11991 (14)0.0596 (6)
H270.40740.21620.12500.071*
C210.2462 (2)0.0511 (2)0.08844 (11)0.0469 (5)
C250.1472 (3)0.3845 (3)0.11780 (14)0.0561 (5)
H250.13850.48200.12010.067*
C290.2253 (2)0.2752 (2)0.16648 (12)0.0476 (5)
C101.0747 (3)0.2791 (3)0.55871 (13)0.0596 (6)
H101.15520.26280.59170.072*
C30.8106 (3)0.1166 (3)0.30651 (13)0.0575 (5)
H30.71230.15950.28320.069*
C170.5615 (3)0.6152 (3)0.36287 (18)0.0709 (7)
H170.48280.61150.39720.085*
C11.0770 (3)0.0803 (3)0.32010 (15)0.0611 (6)
H11.15710.17260.30380.073*
C300.2676 (3)0.1754 (3)0.22721 (15)0.0665 (6)
H300.25990.07700.22740.080*
C200.4076 (3)0.0435 (3)0.07687 (14)0.0579 (6)
H200.48880.00240.07670.069*
C130.8185 (3)0.4965 (3)0.30300 (13)0.0585 (5)
H130.91510.40980.29650.070*
C90.9288 (3)0.4035 (3)0.56844 (13)0.0607 (6)
H90.91240.46730.60750.073*
C260.2968 (3)0.3690 (3)0.12501 (15)0.0625 (6)
H260.39110.45690.13330.075*
C80.8065 (3)0.4337 (3)0.52010 (13)0.0539 (5)
H80.70700.51730.52540.065*
C340.2348 (3)0.4217 (3)0.16785 (15)0.0620 (6)
H340.20410.49120.12820.074*
C160.5362 (3)0.7527 (3)0.3209 (2)0.0881 (10)
H160.43970.83950.32720.106*
C20.9330 (3)0.0211 (3)0.28446 (14)0.0623 (6)
H20.91800.07320.24570.075*
C320.3354 (3)0.3644 (4)0.28715 (16)0.0728 (8)
H320.37580.39320.32680.087*
C310.3208 (4)0.2207 (4)0.28722 (16)0.0765 (8)
H310.34690.15360.32790.092*
C180.3210 (3)0.2570 (3)0.06740 (15)0.0625 (6)
H180.34870.36340.05940.075*
C140.7941 (4)0.6334 (3)0.26199 (14)0.0682 (7)
H140.87390.63860.22870.082*
C330.2895 (4)0.4657 (3)0.22770 (18)0.0739 (7)
H330.29560.56470.22800.089*
C190.4451 (3)0.2013 (3)0.06554 (16)0.0674 (7)
H190.55250.26860.05680.081*
C150.65056 (16)0.76264 (14)0.27072 (8)0.0752 (8)
H150.63200.85480.24290.090*
O40.12630 (16)0.23352 (14)0.91460 (8)0.0639 (4)
H4A0.19580.15560.89330.077*
H4B0.03290.22980.91030.077*
O20.61191 (16)0.08322 (14)0.51118 (8)0.1338 (13)
H2A0.54900.06080.54200.161*
H2B0.70320.00860.50390.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0393 (7)0.0561 (8)0.0680 (10)0.0176 (6)0.0035 (7)0.0057 (7)
O30.0694 (10)0.0672 (10)0.0527 (9)0.0409 (8)0.0022 (8)0.0071 (7)
N40.0444 (9)0.0561 (10)0.0614 (11)0.0231 (8)0.0028 (8)0.0020 (8)
N10.0481 (9)0.0473 (9)0.0674 (12)0.0126 (8)0.0029 (8)0.0026 (9)
C120.0439 (10)0.0470 (10)0.0501 (11)0.0167 (8)0.0089 (8)0.0005 (9)
N20.0476 (9)0.0579 (10)0.0601 (11)0.0207 (8)0.0108 (8)0.0064 (9)
C60.0425 (10)0.0480 (10)0.0508 (11)0.0183 (8)0.0047 (8)0.0058 (9)
C50.0424 (10)0.0432 (10)0.0535 (12)0.0163 (8)0.0005 (8)0.0030 (9)
N30.0522 (10)0.0471 (9)0.0624 (11)0.0207 (8)0.0016 (8)0.0012 (8)
C220.0451 (10)0.0487 (11)0.0449 (11)0.0187 (9)0.0006 (8)0.0019 (8)
C110.0377 (9)0.0475 (10)0.0526 (12)0.0136 (8)0.0040 (8)0.0006 (9)
C40.0460 (10)0.0446 (10)0.0527 (12)0.0178 (8)0.0004 (9)0.0011 (9)
C240.0442 (10)0.0497 (11)0.0440 (10)0.0203 (8)0.0068 (8)0.0047 (8)
C230.0445 (10)0.0505 (11)0.0425 (10)0.0207 (8)0.0029 (8)0.0020 (8)
C70.0412 (10)0.0481 (10)0.0468 (11)0.0176 (8)0.0009 (8)0.0022 (8)
C280.0463 (10)0.0510 (11)0.0500 (11)0.0245 (9)0.0021 (8)0.0027 (9)
C270.0399 (10)0.0682 (14)0.0724 (16)0.0220 (10)0.0043 (10)0.0030 (12)
C210.0462 (10)0.0528 (11)0.0443 (11)0.0219 (9)0.0009 (8)0.0003 (9)
C250.0556 (12)0.0486 (11)0.0644 (14)0.0194 (10)0.0081 (10)0.0005 (10)
C290.0393 (9)0.0532 (11)0.0536 (12)0.0213 (8)0.0005 (8)0.0023 (9)
C100.0610 (13)0.0718 (15)0.0536 (13)0.0333 (12)0.0128 (10)0.0058 (11)
C30.0611 (13)0.0555 (12)0.0587 (14)0.0242 (10)0.0104 (10)0.0001 (10)
C170.0443 (11)0.0556 (13)0.106 (2)0.0134 (10)0.0038 (12)0.0110 (13)
C10.0630 (13)0.0463 (11)0.0705 (15)0.0170 (10)0.0095 (11)0.0099 (11)
C300.0804 (17)0.0634 (14)0.0623 (15)0.0338 (13)0.0138 (13)0.0038 (12)
C200.0456 (11)0.0644 (13)0.0646 (14)0.0232 (10)0.0043 (10)0.0019 (11)
C130.0656 (13)0.0520 (12)0.0546 (13)0.0190 (10)0.0051 (10)0.0052 (10)
C90.0651 (14)0.0745 (15)0.0495 (12)0.0338 (12)0.0007 (10)0.0061 (11)
C260.0443 (11)0.0578 (13)0.0785 (17)0.0110 (10)0.0050 (11)0.0018 (12)
C80.0513 (11)0.0561 (12)0.0533 (12)0.0195 (9)0.0040 (9)0.0054 (10)
C340.0651 (14)0.0554 (13)0.0695 (15)0.0269 (11)0.0035 (12)0.0042 (11)
C160.0540 (14)0.0560 (14)0.143 (3)0.0101 (12)0.0166 (17)0.0245 (17)
C20.0764 (16)0.0549 (13)0.0598 (14)0.0290 (12)0.0008 (12)0.0085 (11)
C320.0537 (13)0.094 (2)0.0728 (17)0.0255 (13)0.0082 (12)0.0264 (15)
C310.0817 (18)0.0847 (19)0.0600 (16)0.0257 (15)0.0219 (14)0.0006 (14)
C180.0596 (13)0.0492 (12)0.0726 (16)0.0151 (10)0.0071 (11)0.0011 (11)
C140.0915 (19)0.0644 (15)0.0554 (14)0.0379 (14)0.0036 (13)0.0015 (11)
C330.0756 (16)0.0710 (16)0.086 (2)0.0376 (14)0.0002 (14)0.0241 (15)
C190.0484 (12)0.0633 (14)0.0816 (18)0.0131 (11)0.0123 (11)0.0009 (12)
C150.0812 (18)0.0612 (15)0.087 (2)0.0315 (13)0.0240 (15)0.0240 (14)
O40.0665 (10)0.0683 (10)0.0674 (11)0.0373 (8)0.0043 (8)0.0011 (8)
O20.0964 (17)0.0766 (14)0.195 (3)0.0078 (13)0.0435 (19)0.0445 (17)
Geometric parameters (Å, º) top
O1—C111.413 (2)C10—H100.9300
O1—H1A0.8200C3—C21.385 (4)
O3—C281.415 (3)C3—H30.9300
O3—H3A0.8200C17—C161.394 (4)
N4—C231.339 (3)C17—H170.9300
N4—C271.343 (3)C1—C21.376 (4)
N1—C51.334 (3)C1—H10.9300
N1—C11.341 (3)C30—C311.380 (4)
C12—C171.374 (3)C30—H300.9300
C12—C131.388 (3)C20—C191.383 (4)
C12—C111.531 (3)C20—H200.9300
N2—C101.335 (3)C13—C141.382 (4)
N2—C61.341 (3)C13—H130.9300
C6—C71.385 (3)C9—C81.384 (3)
C6—C51.471 (3)C9—H90.9300
C5—C41.389 (3)C26—H260.9300
N3—C221.334 (3)C8—H80.9300
N3—C181.337 (3)C34—C331.378 (4)
C22—C211.396 (3)C34—H340.9300
C22—C231.478 (3)C16—C151.368 (4)
C11—C71.528 (3)C16—H160.9300
C11—C41.531 (3)C2—H20.9300
C4—C31.368 (3)C32—C311.372 (4)
C24—C251.377 (3)C32—C331.379 (4)
C24—C231.386 (3)C32—H320.9300
C24—C281.532 (3)C31—H310.9300
C7—C81.380 (3)C18—C191.377 (4)
C28—C291.520 (3)C18—H180.9300
C28—C211.521 (3)C14—C151.382 (3)
C27—C261.378 (3)C14—H140.9300
C27—H270.9300C33—H330.9300
C21—C201.377 (3)C19—H190.9300
C25—C261.385 (3)C15—H150.9300
C25—H250.9300O4—H4A0.8499
C29—C341.379 (3)O4—H4B0.8499
C29—C301.389 (3)O2—H2A0.8500
C10—C91.376 (4)O2—H2B0.8500
C11—O1—H1A109.5C4—C3—H3121.5
C28—O3—H3A109.5C2—C3—H3121.5
C23—N4—C27114.86 (19)C12—C17—C16120.1 (3)
C5—N1—C1114.2 (2)C12—C17—H17119.9
C17—C12—C13118.2 (2)C16—C17—H17119.9
C17—C12—C11119.8 (2)N1—C1—C2124.7 (2)
C13—C12—C11121.89 (19)N1—C1—H1117.6
C10—N2—C6115.3 (2)C2—C1—H1117.6
N2—C6—C7124.5 (2)C31—C30—C29120.7 (2)
N2—C6—C5126.85 (19)C31—C30—H30119.6
C7—C6—C5108.60 (18)C29—C30—H30119.6
N1—C5—C4125.3 (2)C21—C20—C19118.0 (2)
N1—C5—C6126.14 (19)C21—C20—H20121.0
C4—C5—C6108.49 (18)C19—C20—H20121.0
C22—N3—C18115.15 (19)C14—C13—C12121.6 (2)
N3—C22—C21124.5 (2)C14—C13—H13119.2
N3—C22—C23127.28 (19)C12—C13—H13119.2
C21—C22—C23108.21 (18)C10—C9—C8119.9 (2)
O1—C11—C7113.44 (18)C10—C9—H9120.0
O1—C11—C12107.74 (16)C8—C9—H9120.0
C7—C11—C12109.78 (17)C27—C26—C25119.8 (2)
O1—C11—C4113.06 (17)C27—C26—H26120.1
C7—C11—C4100.59 (16)C25—C26—H26120.1
C12—C11—C4112.20 (18)C7—C8—C9117.0 (2)
C3—C4—C5119.0 (2)C7—C8—H8121.5
C3—C4—C11130.0 (2)C9—C8—H8121.5
C5—C4—C11110.99 (19)C33—C34—C29120.4 (3)
C25—C24—C23119.08 (19)C33—C34—H34119.8
C25—C24—C28129.28 (19)C29—C34—H34119.8
C23—C24—C28111.64 (18)C15—C16—C17121.3 (2)
N4—C23—C24124.93 (19)C15—C16—H16119.3
N4—C23—C22126.92 (19)C17—C16—H16119.3
C24—C23—C22108.14 (17)C1—C2—C3119.7 (2)
C8—C7—C6119.0 (2)C1—C2—H2120.2
C8—C7—C11129.77 (19)C3—C2—H2120.2
C6—C7—C11111.19 (18)C31—C32—C33119.3 (2)
O3—C28—C29106.99 (16)C31—C32—H32120.4
O3—C28—C21112.36 (18)C33—C32—H32120.4
C29—C28—C21112.57 (18)C32—C31—C30120.2 (3)
O3—C28—C24112.88 (17)C32—C31—H31119.9
C29—C28—C24111.63 (17)C30—C31—H31119.9
C21—C28—C24100.50 (16)N3—C18—C19124.9 (2)
N4—C27—C26124.2 (2)N3—C18—H18117.5
N4—C27—H27117.9C19—C18—H18117.5
C26—C27—H27117.9C13—C14—C15119.8 (2)
C20—C21—C22118.6 (2)C13—C14—H14120.1
C20—C21—C28129.95 (19)C15—C14—H14120.1
C22—C21—C28111.49 (18)C34—C33—C32120.7 (3)
C24—C25—C26117.1 (2)C34—C33—H33119.7
C24—C25—H25121.5C32—C33—H33119.7
C26—C25—H25121.5C18—C19—C20118.9 (2)
C34—C29—C30118.6 (2)C18—C19—H19120.6
C34—C29—C28119.7 (2)C20—C19—H19120.6
C30—C29—C28121.70 (19)C16—C15—C14118.94 (18)
N2—C10—C9124.2 (2)C16—C15—H15120.5
N2—C10—H10117.9C14—C15—H15120.5
C9—C10—H10117.9H4A—O4—H4B107.7
C4—C3—C2117.1 (2)H2A—O2—H2B114.5
C10—N2—C6—C71.2 (3)C23—N4—C27—C260.9 (4)
C10—N2—C6—C5177.4 (2)N3—C22—C21—C200.1 (3)
C1—N1—C5—C41.1 (3)C23—C22—C21—C20179.6 (2)
C1—N1—C5—C6177.1 (2)N3—C22—C21—C28178.8 (2)
N2—C6—C5—N10.9 (3)C23—C22—C21—C280.8 (2)
C7—C6—C5—N1177.8 (2)O3—C28—C21—C2058.5 (3)
N2—C6—C5—C4179.4 (2)C29—C28—C21—C2062.3 (3)
C7—C6—C5—C40.6 (2)C24—C28—C21—C20178.8 (2)
C18—N3—C22—C211.2 (3)O3—C28—C21—C22120.1 (2)
C18—N3—C22—C23178.3 (2)C29—C28—C21—C22118.99 (19)
C17—C12—C11—O126.8 (3)C24—C28—C21—C220.1 (2)
C13—C12—C11—O1156.7 (2)C23—C24—C25—C261.8 (3)
C17—C12—C11—C797.1 (2)C28—C24—C25—C26178.1 (2)
C13—C12—C11—C779.3 (3)O3—C28—C29—C3424.7 (3)
C17—C12—C11—C4151.9 (2)C21—C28—C29—C34148.6 (2)
C13—C12—C11—C431.7 (3)C24—C28—C29—C3499.2 (2)
N1—C5—C4—C31.2 (3)O3—C28—C29—C30155.8 (2)
C6—C5—C4—C3177.3 (2)C21—C28—C29—C3031.9 (3)
N1—C5—C4—C11179.7 (2)C24—C28—C29—C3080.2 (3)
C6—C5—C4—C111.9 (2)C6—N2—C10—C90.2 (3)
O1—C11—C4—C354.4 (3)C5—C4—C3—C20.4 (3)
C7—C11—C4—C3175.7 (2)C11—C4—C3—C2179.3 (2)
C12—C11—C4—C367.7 (3)C13—C12—C17—C161.4 (4)
O1—C11—C4—C5124.57 (19)C11—C12—C17—C16177.9 (3)
C7—C11—C4—C53.3 (2)C5—N1—C1—C20.3 (4)
C12—C11—C4—C5113.3 (2)C34—C29—C30—C311.1 (4)
C27—N4—C23—C240.4 (3)C28—C29—C30—C31179.4 (2)
C27—N4—C23—C22179.7 (2)C22—C21—C20—C191.2 (3)
C25—C24—C23—N41.0 (3)C28—C21—C20—C19177.4 (2)
C28—C24—C23—N4178.9 (2)C17—C12—C13—C140.7 (4)
C25—C24—C23—C22178.90 (19)C11—C12—C13—C14177.2 (2)
C28—C24—C23—C221.2 (2)N2—C10—C9—C81.0 (4)
N3—C22—C23—N41.6 (4)N4—C27—C26—C250.1 (4)
C21—C22—C23—N4178.9 (2)C24—C25—C26—C271.3 (4)
N3—C22—C23—C24178.3 (2)C6—C7—C8—C91.1 (3)
C21—C22—C23—C241.2 (2)C11—C7—C8—C9179.3 (2)
N2—C6—C7—C81.9 (3)C10—C9—C8—C70.2 (3)
C5—C6—C7—C8176.88 (19)C30—C29—C34—C331.8 (4)
N2—C6—C7—C11178.37 (19)C28—C29—C34—C33178.8 (2)
C5—C6—C7—C112.8 (2)C12—C17—C16—C150.9 (5)
O1—C11—C7—C855.0 (3)N1—C1—C2—C30.4 (4)
C12—C11—C7—C865.6 (3)C4—C3—C2—C10.3 (4)
C4—C11—C7—C8176.0 (2)C33—C32—C31—C302.8 (4)
O1—C11—C7—C6124.70 (19)C29—C30—C31—C321.2 (5)
C12—C11—C7—C6114.7 (2)C22—N3—C18—C191.4 (4)
C4—C11—C7—C63.7 (2)C12—C13—C14—C150.5 (4)
C25—C24—C28—O359.5 (3)C29—C34—C33—C320.1 (4)
C23—C24—C28—O3120.6 (2)C31—C32—C33—C342.2 (4)
C25—C24—C28—C2961.0 (3)N3—C18—C19—C200.4 (4)
C23—C24—C28—C29118.9 (2)C21—C20—C19—C181.0 (4)
C25—C24—C28—C21179.4 (2)C17—C16—C15—C140.3 (4)
C23—C24—C28—C210.7 (2)C13—C14—C15—C161.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.852.668 (2)173
O3—H3A···O4i0.821.892.705 (2)174
O4—H4B···N3ii0.852.012.839 (2)164
O2—H2B···N2iii0.851.912.749 (2)171
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H12N2O·H2O
Mr278.30
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.8703 (13), 9.1691 (18), 18.643 (3)
α, β, γ (°)86.745 (14), 86.943 (12), 67.798 (16)
V3)1400.8 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.848, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
10727, 4893, 3755
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 1.04
No. of reflections4893
No. of parameters375
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.852.668 (2)172.5
O3—H3A···O4i0.821.892.705 (2)173.6
O4—H4B···N3ii0.852.012.839 (2)163.9
O2—H2B···N2iii0.851.912.749 (2)170.7
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+2, y, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Luoyang Institute of Science and Technology.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, K. T., Wang, Z. J., Chien, Y. Y. & Wang, C. L. (2001). Org. Lett. 15, 1037–1043.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds