organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1835-o1836

2-[(Diiso­propyl­thio­phosphor­yl)amino]­pyridinium tetra­fluoro­borate

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 5 April 2012; accepted 16 May 2012; online 23 May 2012)

The title compound, C11H20N2PS+·BF4, is a salt of 2-(diisopropyl­thio­phospho­ryl­amino)­pyridine, a chelating bidentate ligand that furnishes an S atom as a soft donor and a pyridine N atom as a hard atom for transition-metal complexation. The title salt crystallizes with two formula units in the asymmetric unit. The two independent cations are protonated at the pyridine N atoms and have the S atoms syn-oriented to them so as to form bent intra­molecular N—H⋯S hydrogen bonds, one of which one is bifurcated by involving also an N—H⋯F inter­action. The phospho­ryl­amino NH groups form near linear hydrogen bonds to proximal tetra­fluoro­borate anions. Five weak C—H⋯F and three weak C—H⋯S inter­actions link the constituents into a three-dimensional framework. As a result of the crystal packing, the two cations differ notably in conformation, as can be seen from the S—P—N—C torsion angles of −18.7 (1)° in the first and −35.1 (1)° in the second cation.

Related literature

For the synthesis of 2-(diisopropyl­thio­phospho­ryl­amino)­pyridine, see: Smith & Sisler (1961[Smith, N. L. & Sisler, H. H. (1961). J. Org. Chem. 26, 5145-5149.]); Bichler et al. (2011[Bichler, B., Veiros, L. F., Öztopcu, Ö., Puchberger, M., Mereiter, K., Matsubara, K. & Kirchner, K. (2011). Organometallics, 30, 5928-5942.]). For Cu, Pd, and Fe complexes of 2-(diisopropyl­thio­phospho­ryl­amino)­pyridine, see: Öztopcu et al. (2011[Öztopcu, Ö., Mereiter, K., Puchberger, M. & Kirchner, K. (2011). Dalton Trans. 40, 7008-7021.]); Bichler et al. (2011[Bichler, B., Veiros, L. F., Öztopcu, Ö., Puchberger, M., Mereiter, K., Matsubara, K. & Kirchner, K. (2011). Organometallics, 30, 5928-5942.]); Holzhacker et al. (2011[Holzhacker, C., Standfest-Hauser, C. M., Puchberger, M., Mereiter, K., Veiros, L. F., Calhorda, M. J., Deus Carvalho, M., Ferreira, L. P., Godinho, M., Hartl, F. & Kirchner, K. A. (2011). Organometallics, 30, 6587-6601.]). For an review on S-bearing transition-metal catalysts, see: Bayón et al. (1999[Bayón, J. C., Claver, C. & Masdeu-Bultó, A. M. (1999). Coord. Chem. Rev. 193-195, 73-145.]).

[Scheme 1]

Experimental

Crystal data
  • C11H20N2PS+·BF4

  • Mr = 330.13

  • Triclinic, [P \overline 1]

  • a = 9.5816 (1) Å

  • b = 11.3855 (2) Å

  • c = 14.3650 (2) Å

  • α = 88.221 (1)°

  • β = 86.067 (1)°

  • γ = 82.299 (1)°

  • V = 1548.93 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.54 × 0.40 × 0.38 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.79, Tmax = 0.86

  • 40158 measured reflections

  • 8997 independent reflections

  • 8332 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.02

  • 8997 reflections

  • 385 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1 0.831 (17) 2.482 (16) 3.1356 (9) 136.3 (14)
N1—H1N⋯F2i 0.831 (17) 2.266 (16) 2.8820 (10) 131.2 (14)
N2—H2N⋯F1 0.827 (16) 1.982 (17) 2.8073 (10) 175.6 (15)
N3—H3N⋯S2 0.862 (16) 2.375 (16) 3.1297 (9) 146.4 (14)
N4—H4N⋯F5 0.824 (17) 2.059 (17) 2.8714 (11) 168.7 (15)
C2—H2⋯F4 0.95 2.39 3.3341 (12) 177
C4—H4⋯F7ii 0.95 2.36 3.2290 (12) 151
C6—H6⋯S1iii 1.00 2.71 3.7038 (10) 172
C13—H13⋯F7 0.95 2.53 3.2968 (13) 138
C14—H14⋯S1iv 0.95 2.85 3.5328 (10) 129
C15—H15⋯F3 0.95 2.52 3.2773 (13) 137
C16—H16⋯F6i 0.95 2.41 3.3406 (12) 165
C17—H17⋯S2v 1.00 2.73 3.7128 (10) 169
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) -x+2, -y+1, -z+1; (iv) x-1, y, z; (v) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Dialkyl- and diaryl-thiophosphoryl derivatives of 2-aminopyridine are chelating bidentate ligands, which furnish a pyridine nitrogen as a hard and a sulfur as a soft donor site for transition metal coordination. This dual property is desirable for reactive transition metal complexes (Bayón et al., 1999) and, accordingly, a variety of such complexes have been studied in recent years (Öztopcu et al., 2011; Bichler et al., 2011). During recent work in this field (Holzhacker et al., 2011), the title compound was obtained in suitable crystals and was studied by X-ray diffraction. It crystallizes in the triclinic space group P1 and contains two formula units [C11H20N2PS]+(BF4)- in the asymmetric unit (Fig. 1). In (I), both organocations [SN-iPr]H+ possess very similar bond lengths and bond angles, but differ significantly in their conformation, as can be seen from the torsion angles S1—P1—N2—C1 = -18.72 (10)° and P1—N2—C1—N1 = -16.91 (14)° in the first cation and corresponding values of -35.14 (10)° and +6.74 (14)° in the second cation. The conformation of the [SN-iPr]H+ moiety in (I) is related to that of its metal chelate complexes (Öztopcu et al., 2011; Bichler et al., 2011; Holzhacker et al., 2011), which have the S atoms like in (I) syn-oriented to the pyridine N, but different from the solid state structure of the unprotonated neutral parent molecule [SN-iPr], in which the S atom points away from the pyridine nitrogen corresponding to a S1—P1—N2—C1 torsion angle near 180° (Öztopcu et al., 2011). Compared with the neutral parent molecule [SN-iPr], the bond lengths and bond angles in (I) are modestly altered by the pyridine N-protonation with subtle changes of about 0.01 - 0.02 Å in the P1—N2—C1—N1—C5 / P2—N4—C12—N3—C16 system and a significant increase of the ring bond angles C1—N1—C5 / C12—N3—C16 from ca 117° in [SN-iPr] (Öztopcu et al., 2011) to ca 123° in [SN-iPr]H+ of (I). Both pyridinium moieties in (I) donate strongly bent intramolecular hydrogen bonds to the sulfur atoms as acceptors with N···S distances of 3.136 (1) Å and 3.130 (1) Å for cation 1and 2, respectively (Table 1). For cation 1, the N1—H1n group has in addition to S1 also a fluorine F2(1 + x,y,z) nearby and the entire interaction has to be classified as an asymmetrically branched bifurcated hydrogen bond (N1—H1n···S1,F2; the sum of the three bond angles about H1n is 358°). The phosphorylamine NH groups, which are distinctly acidic irrespective whether the pyridine fragment is protonated or not, form comparatively straight N—H···F hydrogen bonds to the BF4 anions with N···F distances of 2.807 (1) and 2.871 (1) Å (Table 1). In the parent compound [SN-iPr] the phosphorylamine NH groups donate intermolecular N—H···S hydrogen bonds of N···S = 3.38 and 3.47 Å to neighbouring molecules (Öztopcu et al., 2011). A partial packing diagram showing the N—H donated hydrogen bonds in (I) is presented in Fig. 2. Three-dimensional coherence of the structure is provided by five different C—H···F and three C—H···S interactions listed in Table 1.

Related literature top

For the synthesis of 2-(diisopropylthiophosphorylamino)pyridine, see: Smith & Sisler (1961); Bichler et al. (2011). For Cu, Pd, and Fe complexes of 2-(diisopropylthiophosphorylamino)pyridine, see: Öztopcu et al. (2011); Bichler et al. (2011); Holzhacker et al. (2011). For an review on S-bearing transition-metal catalysts, see: Bayón et al. (1999).

Experimental top

2-(Diisopropylthiophosphorylamino)-pyridine (Öztopcu et al., 2011; Smith & Sisler, 1961; 1.03 mmol, 250 mg) was dissolved in dry CH2Cl2 and 1.05 equivalent of HBF4 in Et2O was added. The solvent was removed under reduced pressure and the solid residue was washed twice with 15 ml dry Et2O. Yield: 326 mg, 95.7%, white solid. Colourless crystals of the title compound for X-ray diffraction were obtained from a CH2Cl2 solution by vapour diffusion of Et2O. 1H NMR (δ, CD2Cl2, 20°C): 15.15 (bs, 1H, [pyH]+), 8.12 (t, J = 7.8 Hz, 1H, py6),7.98 – 7.90 (m, 2H, py4, NH), 7.84 (d, J = 9.0 Hz, 1H, py3),7.25 (t, 6.8 Hz, 1H, py5), 2.65 – 2.51 (m, 2H, CH(CH3)2), 1.38 – 1.23 (m, 12H, CH(CH3)2). 13C{1H}NMR (δ, CH2Cl2, 20°C): 154.6 (s, py2), 146.0(s, py6), 135.0 (s, py4), 118.2 (s, py5), 117.2 (s, py3), 31.1 (d, J = 57.2 Hz, CH(CH3)2), 15.4 (s, CH(CH3)2), 15.1 (s, CH(CH3)2). 31P{1H}NMR (δ, CD2Cl2, 20°C): 107.2.

Refinement top

C-bonded H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.95–1.00 Å, Uiso(H) = 1.2Ueq(C). N-bonded H atoms were fully refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids at the 50% probability level and dashed red lines for hydrogen bonds.
[Figure 2] Fig. 2. Partial packing diagram of the structure viewed along [001] showing only the N—H···S and N—H···F hydrogen bonds as dashed lines. C-bonded H-atoms omitted for clarity.
2-[(Diisopropylthiophosphoryl)amino]pyridinium tetrafluoroborate top
Crystal data top
C11H20N2PS+·BF4Z = 4
Mr = 330.13F(000) = 688
Triclinic, P1Dx = 1.416 Mg m3
a = 9.5816 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3855 (2) ÅCell parameters from 9086 reflections
c = 14.3650 (2) Åθ = 2.3–30.5°
α = 88.221 (1)°µ = 0.34 mm1
β = 86.067 (1)°T = 100 K
γ = 82.299 (1)°Prism, colourless
V = 1548.93 (4) Å30.54 × 0.40 × 0.38 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8997 independent reflections
Radiation source: fine-focus sealed tube8332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.79, Tmax = 0.86k = 1616
40158 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.7013P]
where P = (Fo2 + 2Fc2)/3
8997 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C11H20N2PS+·BF4γ = 82.299 (1)°
Mr = 330.13V = 1548.93 (4) Å3
Triclinic, P1Z = 4
a = 9.5816 (1) ÅMo Kα radiation
b = 11.3855 (2) ŵ = 0.34 mm1
c = 14.3650 (2) ÅT = 100 K
α = 88.221 (1)°0.54 × 0.40 × 0.38 mm
β = 86.067 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8997 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
8332 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.86Rint = 0.026
40158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.72 e Å3
8997 reflectionsΔρmin = 0.55 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.78596 (2)0.65777 (2)0.445334 (16)0.01166 (5)
S10.96769 (2)0.63976 (2)0.374765 (18)0.01685 (5)
N10.87680 (9)0.91293 (7)0.39707 (6)0.01373 (15)
H1N0.9345 (17)0.8543 (14)0.4094 (11)0.026 (4)*
N20.69381 (9)0.79586 (7)0.43140 (6)0.01417 (15)
H2N0.6070 (17)0.7983 (13)0.4336 (11)0.023 (4)*
C10.73899 (10)0.89975 (8)0.40033 (6)0.01231 (16)
C20.64302 (10)0.99596 (8)0.37087 (7)0.01522 (17)
H20.54470.99050.37420.018*
C30.69272 (11)1.09772 (9)0.33728 (7)0.01724 (18)
H30.62831.16230.31630.021*
C40.83746 (11)1.10760 (9)0.33348 (7)0.01743 (18)
H40.87201.17790.30990.021*
C50.92708 (10)1.01375 (9)0.36444 (7)0.01606 (17)
H51.02541.01870.36330.019*
C60.80053 (10)0.63744 (8)0.57047 (7)0.01523 (17)
H60.85730.55840.58090.018*
C70.88217 (12)0.73112 (10)0.60746 (7)0.02037 (19)
H7A0.82470.80900.60480.031*
H7B0.97040.73330.56900.031*
H7C0.90360.71100.67220.031*
C80.65750 (12)0.63545 (11)0.62449 (7)0.0227 (2)
H8A0.67140.62500.69130.034*
H8B0.61240.56960.60330.034*
H8C0.59710.71040.61340.034*
C90.66301 (10)0.56210 (8)0.40889 (7)0.01525 (17)
H90.57140.58050.44650.018*
C100.72355 (12)0.43267 (9)0.42862 (8)0.0225 (2)
H10A0.65650.38030.41170.034*
H10B0.73970.42160.49510.034*
H10C0.81310.41340.39170.034*
C110.63660 (12)0.58331 (11)0.30551 (8)0.0232 (2)
H11A0.72650.56990.26810.035*
H11B0.59270.66510.29560.035*
H11C0.57370.52850.28660.035*
P20.28135 (2)0.17525 (2)0.010066 (16)0.01218 (5)
S20.45868 (3)0.20511 (2)0.055680 (18)0.01840 (6)
N30.36925 (9)0.40856 (7)0.08654 (6)0.01469 (15)
H3N0.4264 (17)0.3527 (14)0.0599 (11)0.026 (4)*
N40.18559 (9)0.30094 (7)0.05392 (6)0.01499 (15)
H4N0.0991 (18)0.3036 (14)0.0574 (11)0.026 (4)*
C120.23059 (10)0.39780 (8)0.09024 (6)0.01343 (16)
C130.13552 (10)0.48762 (9)0.13349 (7)0.01662 (18)
H130.03710.48250.13820.020*
C140.18682 (11)0.58298 (9)0.16883 (7)0.01770 (18)
H140.12290.64380.19830.021*
C150.33146 (11)0.59206 (9)0.16226 (7)0.01705 (18)
H150.36620.65850.18640.020*
C160.42105 (10)0.50322 (9)0.12037 (7)0.01625 (17)
H160.51970.50730.11480.020*
C170.30506 (11)0.07372 (9)0.10941 (7)0.01614 (17)
H170.36260.00080.08630.019*
C180.38861 (12)0.12465 (11)0.18215 (8)0.0233 (2)
H18A0.33140.19390.21040.035*
H18B0.47570.14830.15190.035*
H18C0.41220.06430.23070.035*
C190.16526 (12)0.04013 (11)0.15352 (8)0.0239 (2)
H19A0.18400.01550.20600.036*
H19B0.11680.00280.10680.036*
H19C0.10550.11160.17600.036*
C200.15834 (11)0.12086 (9)0.06363 (7)0.01632 (17)
H200.06590.11960.02700.020*
C210.21606 (12)0.00593 (10)0.09231 (8)0.0229 (2)
H21A0.15120.03520.13330.034*
H21B0.22490.05730.03640.034*
H21C0.30890.00630.12550.034*
C220.13528 (14)0.20246 (11)0.14931 (8)0.0268 (2)
H22A0.22420.20080.18760.040*
H22B0.10310.28360.12920.040*
H22C0.06380.17520.18610.040*
B10.28660 (12)0.85386 (10)0.39883 (8)0.0185 (2)
F10.40011 (7)0.79614 (7)0.44747 (6)0.02936 (16)
F20.16085 (7)0.84002 (7)0.44969 (5)0.02751 (15)
F30.28753 (12)0.80759 (9)0.31181 (6)0.0517 (3)
F40.29860 (8)0.97445 (6)0.39163 (6)0.03064 (16)
B20.19867 (12)0.34423 (10)0.11792 (9)0.0193 (2)
F50.10985 (7)0.28359 (7)0.04786 (6)0.03054 (16)
F60.22706 (8)0.46261 (6)0.09101 (5)0.02529 (14)
F70.12520 (9)0.33533 (7)0.19898 (6)0.03483 (18)
F80.32269 (8)0.29481 (7)0.13303 (7)0.03629 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.00889 (10)0.01168 (10)0.01423 (10)0.00092 (7)0.00103 (8)0.00099 (8)
S10.01067 (10)0.01698 (11)0.02161 (11)0.00076 (8)0.00251 (8)0.00108 (8)
N10.0098 (4)0.0138 (4)0.0175 (4)0.0012 (3)0.0016 (3)0.0018 (3)
N20.0077 (3)0.0133 (3)0.0212 (4)0.0011 (3)0.0006 (3)0.0034 (3)
C10.0104 (4)0.0136 (4)0.0130 (4)0.0015 (3)0.0009 (3)0.0000 (3)
C20.0113 (4)0.0149 (4)0.0192 (4)0.0002 (3)0.0028 (3)0.0011 (3)
C30.0167 (4)0.0144 (4)0.0203 (4)0.0002 (3)0.0036 (3)0.0013 (3)
C40.0187 (5)0.0146 (4)0.0197 (4)0.0048 (3)0.0020 (3)0.0010 (3)
C50.0137 (4)0.0165 (4)0.0189 (4)0.0054 (3)0.0008 (3)0.0002 (3)
C60.0152 (4)0.0150 (4)0.0156 (4)0.0018 (3)0.0033 (3)0.0020 (3)
C70.0188 (5)0.0234 (5)0.0204 (5)0.0058 (4)0.0050 (4)0.0022 (4)
C80.0224 (5)0.0301 (5)0.0168 (4)0.0102 (4)0.0016 (4)0.0003 (4)
C90.0134 (4)0.0155 (4)0.0175 (4)0.0037 (3)0.0022 (3)0.0005 (3)
C100.0230 (5)0.0148 (4)0.0306 (5)0.0038 (4)0.0053 (4)0.0009 (4)
C110.0247 (5)0.0281 (5)0.0188 (5)0.0081 (4)0.0068 (4)0.0007 (4)
P20.01002 (11)0.01213 (10)0.01402 (10)0.00055 (8)0.00027 (8)0.00110 (8)
S20.01374 (11)0.01706 (11)0.02344 (12)0.00190 (8)0.00638 (9)0.00245 (9)
N30.0101 (4)0.0149 (4)0.0187 (4)0.0008 (3)0.0009 (3)0.0029 (3)
N40.0087 (4)0.0140 (4)0.0221 (4)0.0010 (3)0.0005 (3)0.0040 (3)
C120.0112 (4)0.0140 (4)0.0149 (4)0.0013 (3)0.0002 (3)0.0001 (3)
C130.0111 (4)0.0163 (4)0.0219 (4)0.0009 (3)0.0021 (3)0.0029 (3)
C140.0155 (4)0.0164 (4)0.0206 (4)0.0008 (3)0.0023 (3)0.0037 (3)
C150.0168 (4)0.0169 (4)0.0180 (4)0.0043 (3)0.0003 (3)0.0027 (3)
C160.0125 (4)0.0180 (4)0.0188 (4)0.0038 (3)0.0011 (3)0.0010 (3)
C170.0152 (4)0.0162 (4)0.0167 (4)0.0010 (3)0.0018 (3)0.0014 (3)
C180.0216 (5)0.0291 (5)0.0200 (5)0.0042 (4)0.0075 (4)0.0022 (4)
C190.0221 (5)0.0290 (5)0.0214 (5)0.0091 (4)0.0004 (4)0.0065 (4)
C200.0152 (4)0.0172 (4)0.0166 (4)0.0009 (3)0.0025 (3)0.0030 (3)
C210.0235 (5)0.0197 (5)0.0256 (5)0.0005 (4)0.0041 (4)0.0084 (4)
C220.0315 (6)0.0278 (5)0.0212 (5)0.0007 (4)0.0100 (4)0.0021 (4)
B10.0149 (5)0.0196 (5)0.0203 (5)0.0000 (4)0.0001 (4)0.0008 (4)
F10.0104 (3)0.0298 (4)0.0461 (4)0.0001 (2)0.0016 (3)0.0148 (3)
F20.0114 (3)0.0351 (4)0.0361 (4)0.0048 (3)0.0026 (3)0.0074 (3)
F30.0758 (7)0.0500 (5)0.0258 (4)0.0059 (5)0.0004 (4)0.0137 (4)
F40.0229 (3)0.0203 (3)0.0485 (4)0.0036 (3)0.0036 (3)0.0086 (3)
B20.0127 (5)0.0187 (5)0.0265 (5)0.0025 (4)0.0001 (4)0.0003 (4)
F50.0173 (3)0.0304 (4)0.0427 (4)0.0002 (3)0.0051 (3)0.0121 (3)
F60.0251 (3)0.0212 (3)0.0275 (3)0.0022 (2)0.0010 (3)0.0046 (3)
F70.0384 (4)0.0365 (4)0.0310 (4)0.0084 (3)0.0118 (3)0.0121 (3)
F80.0160 (3)0.0299 (4)0.0636 (5)0.0087 (3)0.0073 (3)0.0091 (4)
Geometric parameters (Å, º) top
P1—N21.7100 (8)N3—C121.3478 (12)
P1—C61.8177 (10)N3—C161.3612 (12)
P1—C91.8199 (10)N3—H3N0.862 (16)
P1—S11.9434 (3)N4—C121.3669 (12)
N1—C11.3463 (12)N4—H4N0.824 (17)
N1—C51.3614 (12)C12—C131.4049 (13)
N1—H1N0.831 (17)C13—C141.3746 (14)
N2—C11.3651 (12)C13—H130.9500
N2—H2N0.827 (16)C14—C151.4001 (14)
C1—C21.4069 (12)C14—H140.9500
C2—C31.3725 (13)C15—C161.3625 (14)
C2—H20.9500C15—H150.9500
C3—C41.4035 (14)C16—H160.9500
C3—H30.9500C17—C181.5315 (14)
C4—C51.3617 (14)C17—C191.5323 (15)
C4—H40.9500C17—H171.0000
C5—H50.9500C18—H18A0.9800
C6—C81.5303 (15)C18—H18B0.9800
C6—C71.5323 (14)C18—H18C0.9800
C6—H61.0000C19—H19A0.9800
C7—H7A0.9800C19—H19B0.9800
C7—H7B0.9800C19—H19C0.9800
C7—H7C0.9800C20—C221.5290 (15)
C8—H8A0.9800C20—C211.5334 (14)
C8—H8B0.9800C20—H201.0000
C8—H8C0.9800C21—H21A0.9800
C9—C111.5300 (14)C21—H21B0.9800
C9—C101.5349 (14)C21—H21C0.9800
C9—H91.0000C22—H22A0.9800
C10—H10A0.9800C22—H22B0.9800
C10—H10B0.9800C22—H22C0.9800
C10—H10C0.9800B1—F31.3704 (14)
C11—H11A0.9800B1—F21.3904 (13)
C11—H11B0.9800B1—F41.3932 (13)
C11—H11C0.9800B1—F11.4097 (13)
P2—N41.7063 (8)B2—F81.3828 (13)
P2—C171.8155 (10)B2—F61.3870 (13)
P2—C201.8168 (10)B2—F71.3956 (14)
P2—S21.9517 (3)B2—F51.4078 (14)
N2—P1—C6105.14 (4)C12—N3—C16123.33 (8)
N2—P1—C9102.21 (4)C12—N3—H3N117.0 (10)
C6—P1—C9108.40 (5)C16—N3—H3N119.6 (10)
N2—P1—S1112.59 (3)C12—N4—P2129.67 (7)
C6—P1—S1113.15 (3)C12—N4—H4N113.3 (11)
C9—P1—S1114.42 (3)P2—N4—H4N116.9 (11)
C1—N1—C5122.89 (8)N3—C12—N4120.31 (8)
C1—N1—H1N118.4 (11)N3—C12—C13118.05 (9)
C5—N1—H1N118.3 (11)N4—C12—C13121.63 (9)
C1—N2—P1130.31 (7)C14—C13—C12119.09 (9)
C1—N2—H2N113.2 (11)C14—C13—H13120.5
P1—N2—H2N115.3 (11)C12—C13—H13120.5
N1—C1—N2120.84 (8)C13—C14—C15121.22 (9)
N1—C1—C2118.15 (8)C13—C14—H14119.4
N2—C1—C2121.00 (8)C15—C14—H14119.4
C3—C2—C1119.39 (9)C16—C15—C14118.29 (9)
C3—C2—H2120.3C16—C15—H15120.9
C1—C2—H2120.3C14—C15—H15120.9
C2—C3—C4120.87 (9)N3—C16—C15120.00 (9)
C2—C3—H3119.6N3—C16—H16120.0
C4—C3—H3119.6C15—C16—H16120.0
C5—C4—C3118.20 (9)C18—C17—C19110.96 (9)
C5—C4—H4120.9C18—C17—P2110.62 (7)
C3—C4—H4120.9C19—C17—P2112.78 (7)
N1—C5—C4120.46 (9)C18—C17—H17107.4
N1—C5—H5119.8C19—C17—H17107.4
C4—C5—H5119.8P2—C17—H17107.4
C8—C6—C7111.65 (8)C17—C18—H18A109.5
C8—C6—P1112.90 (7)C17—C18—H18B109.5
C7—C6—P1110.39 (7)H18A—C18—H18B109.5
C8—C6—H6107.2C17—C18—H18C109.5
C7—C6—H6107.2H18A—C18—H18C109.5
P1—C6—H6107.2H18B—C18—H18C109.5
C6—C7—H7A109.5C17—C19—H19A109.5
C6—C7—H7B109.5C17—C19—H19B109.5
H7A—C7—H7B109.5H19A—C19—H19B109.5
C6—C7—H7C109.5C17—C19—H19C109.5
H7A—C7—H7C109.5H19A—C19—H19C109.5
H7B—C7—H7C109.5H19B—C19—H19C109.5
C6—C8—H8A109.5C22—C20—C21111.04 (9)
C6—C8—H8B109.5C22—C20—P2110.40 (7)
H8A—C8—H8B109.5C21—C20—P2109.04 (7)
C6—C8—H8C109.5C22—C20—H20108.8
H8A—C8—H8C109.5C21—C20—H20108.8
H8B—C8—H8C109.5P2—C20—H20108.8
C11—C9—C10111.19 (9)C20—C21—H21A109.5
C11—C9—P1110.76 (7)C20—C21—H21B109.5
C10—C9—P1108.62 (7)H21A—C21—H21B109.5
C11—C9—H9108.7C20—C21—H21C109.5
C10—C9—H9108.7H21A—C21—H21C109.5
P1—C9—H9108.7H21B—C21—H21C109.5
C9—C10—H10A109.5C20—C22—H22A109.5
C9—C10—H10B109.5C20—C22—H22B109.5
H10A—C10—H10B109.5H22A—C22—H22B109.5
C9—C10—H10C109.5C20—C22—H22C109.5
H10A—C10—H10C109.5H22A—C22—H22C109.5
H10B—C10—H10C109.5H22B—C22—H22C109.5
C9—C11—H11A109.5F3—B1—F2110.21 (10)
C9—C11—H11B109.5F3—B1—F4110.25 (10)
H11A—C11—H11B109.5F2—B1—F4108.31 (9)
C9—C11—H11C109.5F3—B1—F1110.41 (10)
H11A—C11—H11C109.5F2—B1—F1108.90 (9)
H11B—C11—H11C109.5F4—B1—F1108.70 (9)
N4—P2—C17105.30 (4)F8—B2—F6110.45 (9)
N4—P2—C20102.38 (4)F8—B2—F7110.28 (10)
C17—P2—C20108.02 (5)F6—B2—F7109.24 (9)
N4—P2—S2112.71 (3)F8—B2—F5110.69 (9)
C17—P2—S2113.40 (3)F6—B2—F5108.88 (9)
C20—P2—S2114.10 (4)F7—B2—F5107.23 (9)
C6—P1—N2—C1104.90 (9)C17—P2—N4—C1288.97 (10)
C9—P1—N2—C1141.95 (9)C20—P2—N4—C12158.17 (9)
S1—P1—N2—C118.72 (10)S2—P2—N4—C1235.14 (10)
C5—N1—C1—N2178.31 (9)C16—N3—C12—N4179.23 (9)
C5—N1—C1—C21.71 (14)C16—N3—C12—C131.73 (14)
P1—N2—C1—N116.91 (14)P2—N4—C12—N36.74 (14)
P1—N2—C1—C2163.11 (8)P2—N4—C12—C13172.27 (8)
N1—C1—C2—C32.07 (14)N3—C12—C13—C140.93 (14)
N2—C1—C2—C3177.95 (9)N4—C12—C13—C14179.96 (9)
C1—C2—C3—C41.09 (15)C12—C13—C14—C150.13 (15)
C2—C3—C4—C50.32 (15)C13—C14—C15—C160.48 (15)
C1—N1—C5—C40.30 (15)C12—N3—C16—C151.40 (15)
C3—C4—C5—N10.75 (15)C14—C15—C16—N30.25 (15)
N2—P1—C6—C864.31 (8)N4—P2—C17—C1862.07 (8)
C9—P1—C6—C844.41 (8)C20—P2—C17—C18170.90 (7)
S1—P1—C6—C8172.43 (6)S2—P2—C17—C1861.61 (8)
N2—P1—C6—C761.44 (8)N4—P2—C17—C1962.85 (8)
C9—P1—C6—C7170.16 (7)C20—P2—C17—C1945.98 (9)
S1—P1—C6—C761.82 (7)S2—P2—C17—C19173.47 (7)
N2—P1—C9—C1164.39 (8)N4—P2—C20—C2269.74 (8)
C6—P1—C9—C11175.09 (7)C17—P2—C20—C22179.43 (7)
S1—P1—C9—C1157.61 (8)S2—P2—C20—C2252.35 (8)
N2—P1—C9—C10173.23 (7)N4—P2—C20—C21168.00 (7)
C6—P1—C9—C1062.53 (8)C17—P2—C20—C2157.18 (8)
S1—P1—C9—C1064.77 (8)S2—P2—C20—C2169.91 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S10.831 (17)2.482 (16)3.1356 (9)136.3 (14)
N1—H1N···F2i0.831 (17)2.266 (16)2.8820 (10)131.2 (14)
N2—H2N···F10.827 (16)1.982 (17)2.8073 (10)175.6 (15)
N3—H3N···S20.862 (16)2.375 (16)3.1297 (9)146.4 (14)
N4—H4N···F50.824 (17)2.059 (17)2.8714 (11)168.7 (15)
C2—H2···F40.952.393.3341 (12)177
C4—H4···F7ii0.952.363.2290 (12)151
C6—H6···S1iii1.002.713.7038 (10)172
C13—H13···F70.952.533.2968 (13)138
C14—H14···S1iv0.952.853.5328 (10)129
C15—H15···F30.952.523.2773 (13)137
C16—H16···F6i0.952.413.3406 (12)165
C17—H17···S2v1.002.733.7128 (10)169
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H20N2PS+·BF4
Mr330.13
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5816 (1), 11.3855 (2), 14.3650 (2)
α, β, γ (°)88.221 (1), 86.067 (1), 82.299 (1)
V3)1548.93 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.54 × 0.40 × 0.38
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.79, 0.86
No. of measured, independent and
observed [I > 2σ(I)] reflections
40158, 8997, 8332
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.02
No. of reflections8997
No. of parameters385
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.55

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S10.831 (17)2.482 (16)3.1356 (9)136.3 (14)
N1—H1N···F2i0.831 (17)2.266 (16)2.8820 (10)131.2 (14)
N2—H2N···F10.827 (16)1.982 (17)2.8073 (10)175.6 (15)
N3—H3N···S20.862 (16)2.375 (16)3.1297 (9)146.4 (14)
N4—H4N···F50.824 (17)2.059 (17)2.8714 (11)168.7 (15)
C2—H2···F40.952.393.3341 (12)176.8
C4—H4···F7ii0.952.363.2290 (12)151.3
C6—H6···S1iii1.002.713.7038 (10)171.9
C13—H13···F70.952.533.2968 (13)137.7
C14—H14···S1iv0.952.853.5328 (10)129.4
C15—H15···F30.952.523.2773 (13)136.6
C16—H16···F6i0.952.413.3406 (12)164.7
C17—H17···S2v1.002.733.7128 (10)169.0
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z.
 

Acknowledgements

Financial support by the Fonds zur Förderung der wissenschaftlichen Forschung (FWF) is gratefully acknowledged (project No. P24202).

References

First citationBayón, J. C., Claver, C. & Masdeu-Bultó, A. M. (1999). Coord. Chem. Rev. 193–195, 73–145.  Google Scholar
First citationBichler, B., Veiros, L. F., Öztopcu, Ö., Puchberger, M., Mereiter, K., Matsubara, K. & Kirchner, K. (2011). Organometallics, 30, 5928–5942.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHolzhacker, C., Standfest-Hauser, C. M., Puchberger, M., Mereiter, K., Veiros, L. F., Calhorda, M. J., Deus Carvalho, M., Ferreira, L. P., Godinho, M., Hartl, F. & Kirchner, K. A. (2011). Organometallics, 30, 6587–6601.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÖztopcu, Ö., Mereiter, K., Puchberger, M. & Kirchner, K. (2011). Dalton Trans. 40, 7008–7021.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, N. L. & Sisler, H. H. (1961). J. Org. Chem. 26, 5145–5149.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1835-o1836
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds