organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1791-o1792

(±)-Bis(1-carb­­oxy-2-phenyl­ethanaminium) hexa­fluoro­silicate(VI)

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria, bLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 18 April 2012; accepted 12 May 2012; online 19 May 2012)

The asymmetric unit of the title fluoro­silicate salt, 2C9H12NO2+·SiF62−, consists of a phenylalaninium cation and half of a fluorosilicate anion, the Si atom being located on an inversion center. In the crystal, all of the F atoms act as hydrogen-bond acceptors and link the cations through different graph-set motifs, forming layers developing parallel to (100).

Related literature

For applications of fluoro­silicate salts, see: Katayama et al. (2001[Katayama, Y., Yokomizo, M., Miura, T. & Kishi, T. (2001). Electrochemistry, 69, 834-836.]); Kalem (2004[Kalem, S. (2004). Appl. Surf. Sci. 236, 336-341.]); Airoldi & De Farias (2000[Airoldi, C. & De Farias, R. F. (2000). J. Fluorine Chem. 103, 53-55.]); Han et al. (2000[Han, S., Shihabi, D. S. & Chang, C. D. (2000). J. Catal. 196, 375-378.]); Gelmboldt (1989[Gelmboldt, V. O. (1989). Zh. Neorg. Khim. 34, 239-240.]); Gelmboldt et al. (2007[Gelmboldt, V. O., Ganin, E. V. & Domasevitch, K. V. (2007). Acta Cryst. C63, o530-o534.]). For our previous work on hydrogen-bonding inter­actions in the crystal structures of protonated amines, see: Bouacida et al. (2005[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m1153-m1155.], 2007[Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379-m381.], 2009[Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628-o629.]); Benslimane et al. (2007[Benslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682-o3683.]); Bouacida (2008[Bouacida, S. (2008). PhD thesis, Mentouri-Constantine University, Algeria.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • 2C9H12NO2+·SiF62−

  • Mr = 474.48

  • Monoclinic, P 21 /c

  • a = 11.183 (2) Å

  • b = 5.7531 (10) Å

  • c = 17.000 (4) Å

  • β = 105.59 (2)°

  • V = 1053.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 295 K

  • 0.59 × 0.50 × 0.37 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 2412 measured reflections

  • 2412 independent reflections

  • 1917 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.03

  • 2412 reflections

  • 144 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯F2i 0.82 1.84 2.6456 (14) 167
N2—H2A⋯O2ii 0.89 2.04 2.8511 (17) 151
N2—H2B⋯F3 0.89 1.88 2.7656 (15) 171
N2—H2C⋯F1iii 0.89 2.01 2.8549 (15) 158
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: COLLECT (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Fluorosilicate salts involving onium cations of N– and O– containing organic bases and amino acids have practical applications as ionic liquids (Katayama et al., 2001), dielectrics with cryptocrystalline structure (Kalem, 2004), layered organic-inorganic hybrid materials (Airoldi & De Farias, 2000) and chemical reagents (Han et al., 2000; Gelmboldt, 1989). Their structures are commonly dominated by strong directional interactions involving F atoms and convenient hydrogen-bond donors, although the relationships in such systems can be complicated due to the presence of competitive OH and NH binding sites (Gelmboldt et al., 2007). We report here the synthesis, crystal structure and hydrogen-bonded frameworks of a new hybrid compound based on fluorosilicate. The title compound (I) was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structures of protonated amines (Bouacida et al., 2005, 2007, 2009; Benslimane et al., 2007; Bouacida, 2008). From the molecular point of view, the structure is quite simple, since the individual components do not deviate from the expected geometries, with bond distances and angles lying within reported values for these species (CSD, Allen, 2002). The most attractive aspect of these structures resides in their extensive hydrogen-bonding schemes.

The asymmetric unit of (I) is built up from a (+/-)-phenylalaninium cation and half a molecule of a hexafluorosilicate anion located on an inversion center, connected by N—H···F hydrogen bonds (Fig. 1).

As observed in compound I, all the F atoms of the hexafluorosilicate anion act as hydrogen bond acceptors and are engaged in N—H···F and O—H···F bonds with the alaninium part of the cation (Fig. 2, Table 1). Two H atoms, H2B and H2C and their symmetry related counterparts (-x, -y, 1 - z), of the ammonium NH3 interact with two symmetry related fluorosilicate (-x, -y, 1 - z) building a R42(8) ring labelled B1, whereas H2A, the third H atom of the NH3 and the H atom of the symmetry related (-x, y + 1/2, -z + 1/2) carboxylate complete a R33(10) graph set motif labelled B2. Futhermore, two symmetry related (-x, y - 1/2, 1/2 - z) cations and one fluorosilicate (x, y - 1, z) form a R33 (14) ring labelled B3, through N2—H2C···F1, N2—H2B···O2 and O1—H···F2 (Etter et al., 1990; Bernstein et al., 1995), see Table 1, Fig. 2.

These hydrogen bonds result in the formation of layers parallel to the (1 0 0) plane. In these layers, chains of cations and anions alternate (Fig. 3). As shown in the Figure, the phenyl rings of the symmetry related layers are intercalated; however the centroid to centroid distance between the phenyl rings are too long (4.958 (1) and 4.523 (1) Å) to consider π-π interactions (Janiak, 2000).

Related literature top

For applications of fluorosilicate salts, see: Katayama et al. (2001); Kalem (2004); Airoldi & De Farias (2000); Han et al. (2000); Gelmboldt (1989); Gelmboldt et al. (2007). For our previous work on hydrogen-bonding interactions in the crystal structures of protonated amines, see: Bouacida et al. (2005, 2007, 2009); Benslimane et al. (2007); Bouacida (2008). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995); Janiak (2000).

Experimental top

Crystals of compound I were grown from an aqueous solution that was obtained by dissolving 1 mmol SiO2 and 2 mmol phenylalanine in hydrofluoric acid (HF). The solutions were slowly evaporated to dryness for a couple of weeks. Some white crystals were carefully isolated under polarizing microscope for analysis by X-ray diffraction.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C, N and O atoms, with C—H = 0.93,0.97, 0.98 Å, N—H = 0.89 Å and O—H = 0.82 Å with Uiso(H) = 1.2 or 1.5 Ueq(C, N or O).

Computing details top

Data collection: COLLECT (Otwinowski & Minor, 1997); cell refinement: DIRAX/LSQ (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.[Symmetry codes: (i) -x, 1 - y, 1 - z]
[Figure 2] Fig. 2. Partial view of compound (I), showing the formation of R42(8) (B1), R33(10) (B2) and R33(14) (B3) graph set motifs through N—H···F, N—H···O and O—H···F hydrogen bonds. The C6H5CH2 fragment have been omitted for the sake of clarity. [Symmetry codes: (i) -x, y - 1/2, -z + 1/2; (ii) -x, y + 1/2, -z + 1/2; (iii) x, y - 1, z; (iv) -x, -y, -z + 1; (v) -x, y - 1/2, 1/2 - z]
[Figure 3] Fig. 3. Packing view projected down the b axis showing the formation of layers parallel to the (1 0 0) plane. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
(±)-Bis(1-carboxy-2-phenylethanaminium) hexafluorosilicate(VI) top
Crystal data top
2C9H12NO2+·SiF62F(000) = 492
Mr = 474.48Dx = 1.496 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4769 reflections
a = 11.183 (2) Åθ = 5.0–27.5°
b = 5.7531 (10) ŵ = 0.19 mm1
c = 17.000 (4) ÅT = 295 K
β = 105.59 (2)°Block, white
V = 1053.5 (4) Å30.59 × 0.50 × 0.37 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1917 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 5.0°
Detector resolution: 9 pixels mm-1h = 1413
CCD rotation images, thick slices scansk = 07
2412 measured reflectionsl = 022
2412 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.2833P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
2C9H12NO2+·SiF62V = 1053.5 (4) Å3
Mr = 474.48Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.183 (2) ŵ = 0.19 mm1
b = 5.7531 (10) ÅT = 295 K
c = 17.000 (4) Å0.59 × 0.50 × 0.37 mm
β = 105.59 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1917 reflections with I > 2σ(I)
2412 measured reflectionsRint = 0.000
2412 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
2412 reflectionsΔρmin = 0.19 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.00000.50000.50000.02345 (13)
F10.07812 (8)0.54094 (14)0.43002 (5)0.0345 (2)
F20.11419 (8)0.36774 (15)0.42781 (5)0.0371 (2)
F30.07100 (8)0.24091 (13)0.52540 (5)0.0346 (2)
O10.17794 (11)0.0905 (2)0.21347 (6)0.0403 (3)
H10.17000.01760.17090.060*
O20.10064 (12)0.23340 (19)0.25348 (6)0.0431 (3)
N20.05617 (12)0.0158 (2)0.37935 (7)0.0307 (3)
H2A0.01260.07280.34550.046*
H2B0.06610.07630.42890.046*
H2C0.04990.13810.38200.046*
C20.16410 (14)0.0759 (2)0.34897 (8)0.0293 (3)
H20.16960.24490.34350.035*
C10.14352 (13)0.0392 (2)0.26636 (8)0.0289 (3)
C30.28085 (15)0.0161 (3)0.41120 (9)0.0410 (4)
H3A0.28720.05800.46340.049*
H3B0.27080.18160.41820.049*
C40.40009 (15)0.0225 (3)0.38861 (9)0.0374 (4)
C60.55760 (19)0.1169 (4)0.32857 (12)0.0563 (5)
H60.58650.23080.29940.068*
C90.47022 (18)0.2226 (3)0.41237 (11)0.0493 (4)
H90.44050.33950.43990.059*
C80.58322 (19)0.2497 (4)0.39562 (12)0.0585 (5)
H80.62970.38350.41240.070*
C50.44501 (17)0.1453 (3)0.34602 (11)0.0469 (4)
H50.39880.27910.32890.056*
C70.62729 (18)0.0799 (4)0.35423 (12)0.0580 (5)
H70.70410.09750.34350.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0314 (3)0.0221 (2)0.0178 (2)0.0039 (2)0.00823 (19)0.00049 (18)
F10.0451 (5)0.0334 (4)0.0310 (4)0.0022 (4)0.0206 (4)0.0025 (3)
F20.0414 (5)0.0393 (5)0.0281 (4)0.0112 (4)0.0049 (4)0.0044 (3)
F30.0472 (5)0.0277 (4)0.0311 (4)0.0050 (4)0.0141 (4)0.0041 (3)
O10.0516 (7)0.0483 (6)0.0232 (5)0.0117 (5)0.0137 (5)0.0002 (4)
O20.0606 (8)0.0396 (6)0.0310 (5)0.0123 (5)0.0156 (5)0.0066 (5)
N20.0388 (7)0.0284 (6)0.0283 (6)0.0025 (5)0.0147 (5)0.0024 (5)
C20.0359 (8)0.0285 (7)0.0252 (6)0.0043 (6)0.0110 (6)0.0002 (5)
C10.0274 (7)0.0352 (8)0.0238 (6)0.0002 (6)0.0065 (5)0.0010 (5)
C30.0388 (9)0.0543 (10)0.0265 (7)0.0026 (7)0.0031 (6)0.0038 (7)
C40.0324 (8)0.0468 (9)0.0280 (7)0.0026 (7)0.0003 (6)0.0029 (6)
C60.0453 (11)0.0653 (12)0.0589 (11)0.0071 (9)0.0150 (9)0.0007 (9)
C90.0484 (11)0.0497 (10)0.0441 (9)0.0052 (8)0.0027 (8)0.0041 (8)
C80.0491 (12)0.0588 (12)0.0586 (11)0.0176 (10)0.0009 (9)0.0077 (10)
C50.0412 (10)0.0472 (10)0.0502 (10)0.0055 (8)0.0088 (8)0.0044 (7)
C70.0349 (10)0.0765 (14)0.0596 (11)0.0056 (10)0.0071 (9)0.0138 (10)
Geometric parameters (Å, º) top
Si1—F1i1.6711 (9)C2—H20.9800
Si1—F11.6711 (9)C3—C41.500 (2)
Si1—F3i1.6895 (8)C3—H3A0.9700
Si1—F31.6895 (8)C3—H3B0.9700
Si1—F21.6952 (8)C4—C51.380 (3)
Si1—F2i1.6952 (9)C4—C91.391 (2)
O1—C11.3036 (17)C6—C71.377 (3)
O1—H10.8200C6—C51.379 (3)
O2—C11.2121 (17)C6—H60.9300
N2—C21.4760 (18)C9—C81.377 (3)
N2—H2A0.8900C9—H90.9300
N2—H2B0.8900C8—C71.371 (3)
N2—H2C0.8900C8—H80.9300
C2—C11.5135 (19)C5—H50.9300
C2—C31.537 (2)C7—H70.9300
F1i—Si1—F1180.0O2—C1—O1125.37 (13)
F1i—Si1—F3i90.38 (4)O2—C1—C2121.67 (13)
F1—Si1—F3i89.62 (4)O1—C1—C2112.95 (12)
F1i—Si1—F389.62 (4)C4—C3—C2114.97 (12)
F1—Si1—F390.38 (4)C4—C3—H3A108.5
F3i—Si1—F3180.0C2—C3—H3A108.5
F1i—Si1—F290.90 (5)C4—C3—H3B108.5
F1—Si1—F289.10 (4)C2—C3—H3B108.5
F3i—Si1—F290.00 (4)H3A—C3—H3B107.5
F3—Si1—F290.00 (4)C5—C4—C9118.37 (17)
F1i—Si1—F2i89.10 (4)C5—C4—C3120.33 (15)
F1—Si1—F2i90.90 (5)C9—C4—C3121.26 (16)
F3i—Si1—F2i90.00 (4)C7—C6—C5120.05 (19)
F3—Si1—F2i90.00 (4)C7—C6—H6120.0
F2—Si1—F2i180.0C5—C6—H6120.0
C1—O1—H1109.5C8—C9—C4120.73 (18)
C2—N2—H2A109.5C8—C9—H9119.6
C2—N2—H2B109.5C4—C9—H9119.6
H2A—N2—H2B109.5C7—C8—C9120.13 (18)
C2—N2—H2C109.5C7—C8—H8119.9
H2A—N2—H2C109.5C9—C8—H8119.9
H2B—N2—H2C109.5C6—C5—C4120.84 (17)
N2—C2—C1106.69 (11)C6—C5—H5119.6
N2—C2—C3107.57 (11)C4—C5—H5119.6
C1—C2—C3112.16 (13)C8—C7—C6119.84 (19)
N2—C2—H2110.1C8—C7—H7120.1
C1—C2—H2110.1C6—C7—H7120.1
C3—C2—H2110.1
N2—C2—C1—O239.96 (18)C4—C9—C8—C70.8 (3)
C3—C2—C1—O277.58 (18)C7—C6—C5—C40.5 (3)
N2—C2—C1—O1140.88 (13)C9—C4—C5—C61.0 (2)
C3—C2—C1—O1101.58 (15)C3—C4—C5—C6176.65 (15)
N2—C2—C3—C4177.95 (13)C9—C8—C7—C60.8 (3)
C1—C2—C3—C460.93 (18)C5—C6—C7—C81.4 (3)
C2—C3—C4—C592.09 (19)C4—C3—C2—C160.93 (18)
C2—C3—C4—C990.30 (18)C4—C3—C2—N2177.95 (13)
C5—C4—C9—C81.7 (2)C3—C2—C1—O1101.58 (15)
C3—C4—C9—C8175.98 (15)C3—C2—C1—O277.58 (18)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F2ii0.821.842.6456 (14)167
N2—H2A···O2iii0.892.042.8511 (17)151
N2—H2B···F30.891.882.7656 (15)171
N2—H2C···F1iv0.892.012.8549 (15)158
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula2C9H12NO2+·SiF62
Mr474.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.183 (2), 5.7531 (10), 17.000 (4)
β (°) 105.59 (2)
V3)1053.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.59 × 0.50 × 0.37
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2412, 2412, 1917
Rint0.000
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.03
No. of reflections2412
No. of parameters144
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: COLLECT (Otwinowski & Minor, 1997), DIRAX/LSQ (Duisenberg et al., 2003), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F2i0.821.842.6456 (14)166.9
N2—H2A···O2ii0.892.042.8511 (17)151.3
N2—H2B···F30.891.882.7656 (15)171.3
N2—H2C···F1iii0.892.012.8549 (15)158.2
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

Thanks are due to MESRS and ANDRU (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Nationale pour le Développement de la Recherche Universitaire - Algérie) for financial support via the PNR programme.

References

First citationAiroldi, C. & De Farias, R. F. (2000). J. Fluorine Chem. 103, 53–55.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBenslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682–o3683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBouacida, S. (2008). PhD thesis, Mentouri-Constantine University, Algeria.  Google Scholar
First citationBouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m1153–m1155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGelmboldt, V. O. (1989). Zh. Neorg. Khim. 34, 239–240.  CAS Google Scholar
First citationGelmboldt, V. O., Ganin, E. V. & Domasevitch, K. V. (2007). Acta Cryst. C63, o530–o534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, S., Shihabi, D. S. & Chang, C. D. (2000). J. Catal. 196, 375–378.  Web of Science CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKalem, S. (2004). Appl. Surf. Sci. 236, 336–341.  Web of Science CrossRef CAS Google Scholar
First citationKatayama, Y., Yokomizo, M., Miura, T. & Kishi, T. (2001). Electrochemistry, 69, 834–836.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1791-o1792
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds