organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4RS)-Methyl 4-cyano-4-cyclo­hexyl-4-phenyl­butano­ate

aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu Province 730070, People's Republic of China
*Correspondence e-mail: huylai@163.com

(Received 19 April 2012; accepted 10 May 2012; online 26 May 2012)

In the crystal structure of the title compound, C18H23NO2, there are only van der Waals inter­actions present. The cyclo­hexyl ring has a chair conformation. The longer axes of the displacement parameters of the non-H atoms forming the ethyl­methyl­carboxyl­ate skeleton are perpendicular to the plane through the non-H atoms of this skeleton.

Related literature

For general background to pharmaceutical applications of methyl 4-cyano-4-cyclo­hexyl-4-phenyl­butano­ates, see: Hartmann & Batzl (1986[Hartmann, R. W. & Batzl, Ch. (1986). J. Med. Chem. 29, 1362-1369.]), Hartmann et al. (1992[Hartmann, R. W., Batzl, Ch., Pongratz, T. M. & Mannschreck, A. (1992). J. Med. Chem. 35, 2210-2214.]); Fadel & Garcia-Argote (1996[Fadel, A. & Garcia-Argote, S. (1996). Tetrahedron Asymmetry, 7, 1159-1166.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23NO2

  • Mr = 285.37

  • Monoclinic, P 21 /c

  • a = 8.877 (6) Å

  • b = 9.120 (6) Å

  • c = 20.690 (14) Å

  • β = 95.769 (6)°

  • V = 1666.5 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.986

  • 13440 measured reflections

  • 3816 independent reflections

  • 2026 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.153

  • S = 1.06

  • 3816 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Methyl 4-cyano-4-cyclohexyl-4-phenylbutanoates have attracted widespread attention as a pharmaceutical material to synthesis of 3-(4-aminophenyl)-3-cyclohexylpiperidine-2,6-dione (Fadel & Garcia-Argote, 1996). A variety of 3-(4-aminophenyl)-3-cyclohexylpiperidine-2,6-dione derivatives have been screened as inhibitors of human placental aromatase and treatment of estrogen-dependent diseases (Hartmann & Batzl, 1986, and Hartmann et al., 1992).

The title molecule is shown in Fig. 1. The cyclohexane ring adopts a chair conformation. There are no weak hydrogen bonds and no significant intermolecular ππ electron interactions in the structure. The longer axes of the displacement parameters of the non-hydrogen atoms forming the ethylmethylcarboxylate skeleton are perpendicular to the plane through the non-hydrogen atoms through this skeleton. The displacement parameters of these atoms are rather elongated, possibly due to weak intermolecular interactions between the molecules which may enable more intense thermal agitation of the molecules in the structure.

Fig. 2 shows the packing of the molecules in the title structure.

Related literature top

For general background to pharmaceutical applications of methyl 4-cyano-4-cyclohexyl-4-phenylbutanoates, see: Hartmann & Batzl (1986), Hartmann et al. (1992); Fadel & Garcia-Argote (1996).

Experimental top

Powdered potassium carbonate (6.9 g, 0.05 mol) and tetrabutylammonium bromide (0.8 g, 0.0025 mol) were added to a solution of 2-cyclohexyl-2-phenylacetonitrile (9.95 g, 0.05 mol) in toluene (35 ml). Methyl acrylate (5.16 g, 0.06 mol) was slowly added in the mixture at 110 °C. After refluxing for 7h, the mixture was cooled and water was added, extracted with ethyl acetate (3 × 50 ml), combined organic solutions, washed with water (3 × 50 ml), and dried over MgSO4. The volatiles were removed in vacuo and the crude product was purified by column chromatography over silica gel with ethyl acetate/petroleum ether (1:20 v/v). The title compound was isolated in 96% yield as a white solid. Colourless transparent block-like crystals with approx. dimensions 0.2 × 0.4 × 0.5 mm were obtained by slow evaporation of ethyl acetate/petroleum ether (1:20 v/v).

Refinement top

All the H atoms were located in the difference electron density map. Nevertheless, the H atoms were constrained and refined in the riding motion approximation: Caryl—H = 0.93, Cmethine—H = 0.98, Cmethylene—H = 0.97, Cmethyl—H = 0.96 Å. Uiso(Haryl/methane/methylene) = 1.2 × Ueq(Ccarrier) and Uiso(Hmethyl) = 1.5 × Ueq (Ccarrier).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom labels and the displacement ellipsoids shown at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram, viewed approximately along the b axis. Applied colourse for the atomic species: C - grey, H - green, N - blue; O - red.
(4RS)-Methyl 4-cyano-4-cyclohexyl-4-phenylbutanoate top
Crystal data top
C18H23NO2F(000) = 616
Mr = 285.37Dx = 1.137 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2935 reflections
a = 8.877 (6) Åθ = 2.4–24.9°
b = 9.120 (6) ŵ = 0.07 mm1
c = 20.690 (14) ÅT = 296 K
β = 95.769 (6)°Block, colourless
V = 1666.5 (19) Å30.23 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3816 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1111
Tmin = 0.983, Tmax = 0.986k = 1011
13440 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.7938P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3816 reflectionsΔρmax = 0.24 e Å3
192 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
91 constraintsExtinction coefficient: 0.0181 (18)
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H23NO2V = 1666.5 (19) Å3
Mr = 285.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.877 (6) ŵ = 0.07 mm1
b = 9.120 (6) ÅT = 296 K
c = 20.690 (14) Å0.23 × 0.21 × 0.19 mm
β = 95.769 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
3816 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2026 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.041
13440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
3816 reflectionsΔρmin = 0.20 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2736 (3)0.2805 (2)0.70020 (10)0.0531 (6)
H10.37610.25810.70180.064*
C20.1862 (3)0.2158 (3)0.74406 (11)0.0652 (7)
H20.23050.15050.77480.078*
C30.0358 (3)0.2470 (3)0.74258 (12)0.0666 (7)
H30.02210.20350.77230.080*
C40.0298 (3)0.3430 (3)0.69695 (12)0.0613 (6)
H40.13260.36390.69560.074*
C50.0566 (2)0.4086 (3)0.65311 (11)0.0537 (6)
H50.01160.47400.62250.064*
C60.2101 (2)0.3778 (2)0.65421 (9)0.0431 (5)
C70.3020 (2)0.4512 (2)0.60391 (9)0.0438 (5)
C80.3038 (2)0.6215 (2)0.61212 (10)0.0478 (5)
H80.19910.65550.60310.057*
C90.3583 (3)0.6683 (2)0.68142 (10)0.0539 (6)
H9A0.29470.62330.71130.065*
H9B0.46110.63390.69240.065*
C100.3539 (3)0.8345 (3)0.68922 (12)0.0664 (7)
H10A0.25000.86810.68190.080*
H10B0.39240.86050.73330.080*
C110.4475 (3)0.9097 (3)0.64200 (15)0.0814 (8)
H11A0.43891.01520.64650.098*
H11B0.55320.88320.65170.098*
C120.3937 (4)0.8653 (3)0.57336 (14)0.0828 (9)
H12A0.45760.91090.54370.099*
H12B0.29110.90040.56250.099*
C130.3972 (3)0.6996 (3)0.56456 (12)0.0712 (8)
H13A0.50110.66560.57120.085*
H13B0.35760.67510.52050.085*
C140.4603 (3)0.3992 (3)0.61248 (10)0.0525 (6)
C150.2354 (3)0.4061 (2)0.53446 (10)0.0519 (6)
H15A0.13310.44400.52650.062*
H15B0.29540.45070.50310.062*
C160.2321 (3)0.2420 (3)0.52422 (11)0.0638 (7)
H16A0.33510.20510.52990.077*
H16B0.17730.19720.55740.077*
C170.1604 (3)0.1957 (3)0.45895 (11)0.0600 (6)
C180.1176 (4)0.0077 (4)0.38785 (14)0.1048 (11)
H18A0.15420.04530.35250.157*
H18B0.00910.00210.38460.157*
H18C0.14810.10850.38600.157*
N10.5830 (3)0.3602 (3)0.61735 (10)0.0782 (7)
O10.0970 (3)0.2726 (2)0.41959 (11)0.1196 (9)
O20.1799 (3)0.0558 (2)0.44876 (9)0.0983 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0528 (13)0.0558 (14)0.0509 (12)0.0029 (11)0.0056 (10)0.0068 (11)
C20.0753 (18)0.0634 (17)0.0575 (14)0.0026 (14)0.0097 (12)0.0161 (12)
C30.0739 (18)0.0654 (17)0.0638 (15)0.0129 (14)0.0233 (13)0.0035 (13)
C40.0519 (14)0.0630 (16)0.0714 (16)0.0043 (12)0.0185 (12)0.0075 (13)
C50.0542 (14)0.0514 (14)0.0556 (13)0.0078 (11)0.0065 (10)0.0024 (11)
C60.0487 (12)0.0408 (12)0.0401 (10)0.0021 (9)0.0063 (9)0.0015 (9)
C70.0475 (12)0.0452 (13)0.0393 (10)0.0096 (10)0.0066 (9)0.0034 (9)
C80.0526 (13)0.0461 (13)0.0456 (11)0.0047 (10)0.0086 (9)0.0050 (10)
C90.0567 (14)0.0526 (14)0.0534 (13)0.0002 (11)0.0096 (10)0.0007 (11)
C100.0753 (17)0.0576 (16)0.0672 (16)0.0004 (13)0.0113 (13)0.0077 (13)
C110.095 (2)0.0509 (16)0.101 (2)0.0073 (15)0.0258 (17)0.0033 (15)
C120.115 (2)0.0532 (17)0.085 (2)0.0024 (16)0.0358 (17)0.0148 (15)
C130.101 (2)0.0556 (16)0.0617 (15)0.0003 (14)0.0320 (14)0.0084 (12)
C140.0559 (14)0.0576 (15)0.0452 (12)0.0075 (12)0.0116 (10)0.0051 (10)
C150.0653 (14)0.0503 (14)0.0398 (11)0.0109 (11)0.0045 (10)0.0034 (10)
C160.0911 (19)0.0530 (15)0.0457 (12)0.0089 (13)0.0007 (12)0.0013 (11)
C170.0696 (16)0.0571 (16)0.0514 (13)0.0059 (13)0.0031 (11)0.0007 (12)
C180.143 (3)0.085 (2)0.081 (2)0.026 (2)0.0188 (19)0.0271 (18)
N10.0605 (14)0.0992 (19)0.0761 (15)0.0187 (13)0.0131 (11)0.0069 (13)
O10.175 (2)0.0836 (16)0.0866 (15)0.0319 (15)0.0539 (15)0.0107 (12)
O20.158 (2)0.0592 (13)0.0704 (12)0.0056 (12)0.0256 (12)0.0117 (10)
Geometric parameters (Å, º) top
C1—C61.379 (3)C10—H10B0.9700
C1—C21.384 (3)C11—C121.508 (4)
C1—H10.9300C11—H11A0.9700
C2—C31.362 (3)C11—H11B0.9700
C2—H20.9300C12—C131.523 (4)
C3—C41.374 (4)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.382 (3)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.389 (3)C14—N11.140 (3)
C5—H50.9300C15—C161.512 (3)
C6—C71.538 (3)C15—H15A0.9700
C7—C141.477 (3)C15—H15B0.9700
C7—C151.553 (3)C16—C171.495 (3)
C7—C81.562 (3)C16—H16A0.9700
C8—C131.525 (3)C16—H16B0.9700
C8—C91.528 (3)C17—O11.174 (3)
C8—H80.9800C17—O21.308 (3)
C9—C101.525 (3)C18—O21.445 (3)
C9—H9A0.9700C18—H18A0.9600
C9—H9B0.9700C18—H18B0.9600
C10—C111.510 (4)C18—H18C0.9600
C10—H10A0.9700
C6—C1—C2120.6 (2)C12—C11—C10110.1 (2)
C6—C1—H1119.7C12—C11—H11A109.6
C2—C1—H1119.7C10—C11—H11A109.6
C3—C2—C1120.6 (2)C12—C11—H11B109.6
C3—C2—H2119.7C10—C11—H11B109.6
C1—C2—H2119.7H11A—C11—H11B108.1
C2—C3—C4119.7 (2)C11—C12—C13111.8 (2)
C2—C3—H3120.1C11—C12—H12A109.3
C4—C3—H3120.1C13—C12—H12A109.3
C3—C4—C5120.1 (2)C11—C12—H12B109.3
C3—C4—H4119.9C13—C12—H12B109.3
C5—C4—H4119.9H12A—C12—H12B107.9
C4—C5—C6120.7 (2)C12—C13—C8111.6 (2)
C4—C5—H5119.7C12—C13—H13A109.3
C6—C5—H5119.7C8—C13—H13A109.3
C1—C6—C5118.2 (2)C12—C13—H13B109.3
C1—C6—C7122.61 (19)C8—C13—H13B109.3
C5—C6—C7119.14 (18)H13A—C13—H13B108.0
C14—C7—C6110.00 (17)N1—C14—C7178.1 (2)
C14—C7—C15107.19 (17)C16—C15—C7113.07 (17)
C6—C7—C15109.40 (18)C16—C15—H15A109.0
C14—C7—C8107.87 (18)C7—C15—H15A109.0
C6—C7—C8111.05 (16)C16—C15—H15B109.0
C15—C7—C8111.26 (16)C7—C15—H15B109.0
C13—C8—C9109.49 (19)H15A—C15—H15B107.8
C13—C8—C7113.23 (18)C17—C16—C15113.97 (19)
C9—C8—C7112.28 (17)C17—C16—H16A108.8
C13—C8—H8107.2C15—C16—H16A108.8
C9—C8—H8107.2C17—C16—H16B108.8
C7—C8—H8107.2C15—C16—H16B108.8
C10—C9—C8111.61 (19)H16A—C16—H16B107.7
C10—C9—H9A109.3O1—C17—O2122.2 (2)
C8—C9—H9A109.3O1—C17—C16126.1 (2)
C10—C9—H9B109.3O2—C17—C16111.7 (2)
C8—C9—H9B109.3O2—C18—H18A109.5
H9A—C9—H9B108.0O2—C18—H18B109.5
C11—C10—C9111.2 (2)H18A—C18—H18B109.5
C11—C10—H10A109.4O2—C18—H18C109.5
C9—C10—H10A109.4H18A—C18—H18C109.5
C11—C10—H10B109.4H18B—C18—H18C109.5
C9—C10—H10B109.4C17—O2—C18119.1 (2)
H10A—C10—H10B108.0
C6—C1—C2—C30.0 (4)C6—C7—C8—C953.8 (2)
C1—C2—C3—C40.3 (4)C15—C7—C8—C9175.90 (17)
C2—C3—C4—C50.5 (4)C13—C8—C9—C1055.4 (3)
C3—C4—C5—C60.4 (4)C7—C8—C9—C10177.91 (19)
C2—C1—C6—C50.1 (3)C8—C9—C10—C1157.1 (3)
C2—C1—C6—C7179.3 (2)C9—C10—C11—C1256.5 (3)
C4—C5—C6—C10.1 (3)C10—C11—C12—C1356.4 (3)
C4—C5—C6—C7179.1 (2)C11—C12—C13—C856.4 (3)
C1—C6—C7—C141.1 (3)C9—C8—C13—C1254.9 (3)
C5—C6—C7—C14178.02 (19)C7—C8—C13—C12179.0 (2)
C1—C6—C7—C15118.6 (2)C14—C7—C15—C1662.0 (2)
C5—C6—C7—C1560.5 (2)C6—C7—C15—C1657.2 (2)
C1—C6—C7—C8118.2 (2)C8—C7—C15—C16179.7 (2)
C5—C6—C7—C862.6 (2)C7—C15—C16—C17176.7 (2)
C14—C7—C8—C1357.8 (2)C15—C16—C17—O17.4 (4)
C6—C7—C8—C13178.43 (18)C15—C16—C17—O2170.7 (2)
C15—C7—C8—C1359.5 (3)O1—C17—O2—C181.8 (5)
C14—C7—C8—C966.8 (2)C16—C17—O2—C18180.0 (2)

Experimental details

Crystal data
Chemical formulaC18H23NO2
Mr285.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.877 (6), 9.120 (6), 20.690 (14)
β (°) 95.769 (6)
V3)1666.5 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.983, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13440, 3816, 2026
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.153, 1.06
No. of reflections3816
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

This work was supported by the Key Laboratory of Polymer Materials of Gansu Province (Northwest Normal University).

References

First citationBruker (2008). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFadel, A. & Garcia-Argote, S. (1996). Tetrahedron Asymmetry, 7, 1159–1166.  CrossRef CAS Web of Science Google Scholar
First citationHartmann, R. W. & Batzl, Ch. (1986). J. Med. Chem. 29, 1362–1369.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHartmann, R. W., Batzl, Ch., Pongratz, T. M. & Mannschreck, A. (1992). J. Med. Chem. 35, 2210–2214.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds