metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(di­methyl­formamide-κO)manganese(II) (di­methyl­formamide-κO)penta­kis­(­thio­cyanato­-κN)chromate(III)

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrs'ka St., Kyiv 01601, Ukraine, and bSTC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine
*Correspondence e-mail: valya.semenaka@gmail.com

(Received 26 April 2012; accepted 20 May 2012; online 26 May 2012)

The title compound, [Mn(C3H7NO)6][Cr(NCS)5(C3H7NO)], was obtained unintentionally as a product of an attempted synthesis of heterometallic complexes based on Reineckes anion using manganese powder, Reineckes salt and 1-(2-hy­droxy­eth­yl)tetra­zole as starting materials. The crystal structure of the complex consists of an [Mn(dmf)6]2+ cation and a [Cr(NCS)5(dmf)]2− anion (dmf = dimethyl­formamide). The MnII and CrIII atoms show a slightly distorted octa­hedral MnO6 and CrN5O coordination geometries with adjacent angles in the range 85.29 (13)–95.96 (14)°.

Related literature

For structures including [Mn(dmf)6]2+ cations, see: Khutornoi et al. (2002[Khutornoi, V. A., Naumov, N. G., Mironov, Yu. V., Oeckler, O., Simon, A. & Fedorov, V. E. (2002). Russ. J. Coord. Chem. 28, 193-201.]); Bencini et al. (1992[Bencini, A., Cecconi, F., Ghilardi, C. A., Midollini, S., Nuzzi, F. N. & Orlandini, A. (1992). Inorg. Chem. 31, 5339-5342.]). For background to direct synthesis, see: Makhankova (2011[Makhankova, V. G. (2011). Glob. J. Inorg. Chem. 2, 265-285.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C3H7NO)6][Cr(NCS)5(C3H7NO)]

  • Mr = 909.01

  • Monoclinic, P 21 /c

  • a = 15.327 (3) Å

  • b = 17.742 (2) Å

  • c = 17.278 (2) Å

  • β = 110.36 (2)°

  • V = 4404.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 294 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.735, Tmax = 0.922

  • 20206 measured reflections

  • 9620 independent reflections

  • 2863 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.100

  • S = 0.67

  • 9620 reflections

  • 463 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—N8 1.969 (4)
Cr1—N9 1.977 (4)
Cr1—N11 1.996 (4)
Cr1—O7 1.999 (3)
Cr1—N7 2.002 (4)
Cr1—N12 2.006 (4)
Mn1—O4 2.133 (4)
Mn1—O3 2.140 (4)
Mn1—O1 2.140 (3)
Mn1—O6 2.143 (3)
Mn1—O5 2.167 (3)
Mn1—O2 2.171 (3)

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Continuing our research on direct synthesis of heterometallic complexes using Reineckes salt, (NH)4[Cr(NCS)4(NH3)2].H2O, as a source of building blocks or metalloligands (Makhankova, 2011), we present here a new MnII/CrIII complex, which was obtained unintentionally as a product of an attempted reaction of manganese powder, Reineckes salt and 1-(2-hydroxyethyl)tetrazole in dmf (dimethylformamide). The crystal structure of the complex consists of a slightly distorted octahedral [Mn(dmf)6]2+ cation and [Cr(NCS)5(dmf)]+ anion blocks (Fig. 1). Manganese centers have octahedral coordination environment of six oxygen atoms of dmf ligands. The Mn–O bond lengths vary in the range of 2.133 (4) – 2.171 (3) Å that is in good agreement with those in [Mn(dmf)6][Mo6Br8(NCS)6] [2.152 Å (Khutornoi et al., 2002)]. The cis and trans O–Mn–O bond angles vary from 85.29 (13)° to 95.96 (14)° and from 173.81 (14)° to 175.64 (13)°, respectively. The Cr(III) ions have ON5 environment formed by N atoms of NCS groups and O atom of dmf that replace NH3 groups of initial complex anion of Reineckes salt. The Cr–N(O) bond lengths vary from 1.969 (4) to 2.006 (4) Å. The cis and trans N–Cr–N(O) bond angles vary from 86.51 (13)° to 92.83 (16)° and from 175.62 (12)° to 179.24 (17)°, respectively.

Related literature top

For structures including [Mn(dmf)6]2+ cations, see: Khutornoi et al. (2002); Bencini et al. (1992). For background to direct synthesis, see: Makhankova (2011).

Experimental top

Manganese powder (0.069 g, 1.25 mmol), NH4[Cr(NCS)4(NH3)2].H2O (0.443 g, 1.25 mmol), NH4NCS (0.095 g, 1.25 mmol), 1-(2-hydroxyethyl)tetrazole (0.5 g, 2.5 mmol) and dmf (20 ml) were heated to 50–60° and stirred magnetically until total dissolution of the manganese was observed (4.2 h). Dark blue crystals suitable for the X-ray crystallographic study were deposited after successive addition of PriOH into the resulting blue solution. The crystals were filtered off, washed with dry PriOH and finally dried in vacuo at room temperature. Yield: 0.17 g. Anal. Calc. for C26H49MnCrN12O7S5: Mn, 6.04; Cr, 5.72; C, 34.35; H, 2.86; N, 18.49; S, 17.63. Found: Mn, 6.0; Cr, 5.9; C, 34.5; H, 3.0; N, 18.6; S, 17.7% IR (KBr, cm-1): 3420(w, br), 2964(sh), 2930(w or m), 2807(w), 2116(sh), 2081(vs), 1688(sh), 1653(vs), 1556(sh), 1496(sh), 1425(sh), 1373(m), 1241(m or sh), 1111(m), 1058(sh), 971(w), 865(w), 708(sh), 673(m), 481(w). The compound is sparingly soluble in dmso and dmf, insoluble in water.

Refinement top

Structure was solved by direct methods and refined against F2 within anisotropic approximation for all non-hydrogen atoms. All hydrogen atoms were located geometrically and refined within riding model approximation with C—H = 0.96 (1) Å and Uiso(H)= 1.5Ueq(C) for methyl group H atoms, and C—H = 0.93 (1) Å and Uiso(H)= 1.2Ueq(C) for carbonyl H atoms. O3—C7 bond length was restrained to 1.250 (2) Å value, N3—C7 to 1.330 (3) Å, N3—C8 and N3—C9 to 1.450 (2) Å. Some pairs of atoms (C1 and C7, C3 and C8, C5 and C9) were constrained to have the same anisotropic displacement parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Crystal structure of the complex, showing the atom numbering, with 45% probability displacement ellipsoids
Hexakis(dimethylformamide-κO)manganese(II) (dimethylformamide-κO)pentakis(thiocyanato-κN)chromate(III) top
Crystal data top
[Mn(C3H7NO)6][Cr(NCS)5(C3H7NO)]F(000) = 1896
Mr = 909.01Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 300 reflections
a = 15.327 (3) Åθ = 3.2–28.5°
b = 17.742 (2) ŵ = 0.82 mm1
c = 17.278 (2) ÅT = 294 K
β = 110.36 (2)°Block, blue
V = 4404.9 (11) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
9620 independent reflections
Radiation source: Enhance (Mo) X-ray Source2863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 16.1827 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 2322
Tmin = 0.735, Tmax = 0.922l = 1222
20206 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.67 w = 1/[σ2(Fo2) + (0.0294P)2]
where P = (Fo2 + 2Fc2)/3
9620 reflections(Δ/σ)max < 0.001
463 parametersΔρmax = 0.85 e Å3
4 restraintsΔρmin = 0.57 e Å3
104 constraints
Crystal data top
[Mn(C3H7NO)6][Cr(NCS)5(C3H7NO)]V = 4404.9 (11) Å3
Mr = 909.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.327 (3) ŵ = 0.82 mm1
b = 17.742 (2) ÅT = 294 K
c = 17.278 (2) Å0.40 × 0.20 × 0.10 mm
β = 110.36 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
9620 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2863 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.922Rint = 0.092
20206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0534 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.67Δρmax = 0.85 e Å3
9620 reflectionsΔρmin = 0.57 e Å3
463 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.22880 (5)0.21566 (4)0.23165 (5)0.0298 (2)
Mn10.70617 (5)0.21884 (4)0.26170 (5)0.0372 (2)
N10.8824 (3)0.0894 (2)0.1622 (2)0.0450 (12)
N20.4621 (3)0.0800 (2)0.1678 (3)0.0393 (11)
N30.6171 (3)0.3210 (2)0.4454 (3)0.0520 (13)
N40.9826 (3)0.3188 (2)0.3868 (2)0.0329 (10)
N60.7430 (3)0.4134 (2)0.1329 (3)0.0361 (10)
N70.1901 (3)0.1206 (2)0.1662 (2)0.0315 (10)
N80.1676 (3)0.1834 (2)0.3092 (2)0.0340 (10)
N90.2747 (3)0.3103 (2)0.2927 (3)0.0423 (12)
N100.3868 (3)0.3073 (2)0.1029 (2)0.0329 (10)
N110.3458 (3)0.1635 (2)0.2994 (2)0.0357 (11)
N120.1107 (3)0.2669 (2)0.1626 (2)0.0353 (11)
O10.7688 (2)0.14527 (17)0.1978 (2)0.0477 (10)
O20.5714 (2)0.17089 (17)0.1918 (2)0.0441 (9)
O30.6391 (3)0.2817 (2)0.3308 (3)0.0773 (13)
O40.8408 (2)0.2668 (2)0.3198 (2)0.0544 (11)
O50.7315 (2)0.12866 (18)0.35140 (19)0.0438 (9)
O60.6900 (2)0.30489 (18)0.1707 (2)0.0447 (9)
O70.2835 (2)0.24700 (16)0.14712 (19)0.0387 (9)
S10.15171 (9)0.02018 (7)0.08949 (9)0.0478 (4)
S20.06542 (10)0.13086 (8)0.40395 (9)0.0548 (4)
S30.38322 (11)0.43885 (8)0.35746 (10)0.0648 (5)
S40.46635 (9)0.06510 (8)0.41462 (9)0.0527 (4)
S50.06415 (10)0.32690 (9)0.08380 (9)0.0639 (5)
C10.8415 (5)0.1480 (4)0.1847 (4)0.0816 (15)
H1A0.87120.19440.19080.098*
C20.9712 (4)0.0939 (3)0.1524 (4)0.077 (2)
H2A0.99500.14430.16420.115*
H2B0.96470.08110.09670.115*
H2C1.01360.05940.18980.115*
C30.8435 (4)0.0154 (3)0.1565 (4)0.1045 (19)
H3A0.78200.01870.15910.157*
H3B0.88200.01490.20140.157*
H3C0.84020.00720.10510.157*
C40.5363 (4)0.1137 (3)0.2144 (3)0.0405 (13)
H4A0.56580.09520.26750.049*
C50.4271 (4)0.0114 (3)0.1972 (4)0.0868 (15)
H5A0.45540.00770.25610.130*
H5B0.44260.03250.17200.130*
H5C0.36080.01460.18230.130*
C60.4090 (4)0.1043 (3)0.0861 (3)0.0569 (16)
H6A0.43390.15090.07470.085*
H6B0.34540.11160.08180.085*
H6C0.41190.06680.04710.085*
N50.8034 (3)0.0143 (3)0.3822 (2)0.0483 (12)
C70.6621 (4)0.3234 (3)0.3923 (3)0.0816 (15)
H7A0.71140.35680.40120.098*
C80.5470 (4)0.2770 (3)0.4630 (5)0.1045 (19)
H8A0.52810.23580.42480.157*
H8B0.49410.30830.45780.157*
H8C0.57210.25770.51830.157*
C90.6448 (4)0.3856 (3)0.5001 (3)0.0868 (15)
H9A0.69590.41080.49120.130*
H9B0.66340.36890.55640.130*
H9C0.59330.41980.48880.130*
C100.9062 (4)0.2806 (3)0.3830 (3)0.0426 (14)
H10A0.90240.26320.43250.051*
C111.0567 (4)0.3337 (3)0.4630 (3)0.0706 (19)
H11A1.03880.31720.50830.106*
H11B1.06940.38680.46790.106*
H11C1.11160.30700.46390.106*
C120.9917 (4)0.3480 (3)0.3130 (3)0.0528 (15)
H12A0.94340.32770.26590.079*
H12B1.05130.33410.31070.079*
H12C0.98670.40200.31270.079*
C160.7301 (3)0.3674 (3)0.1886 (3)0.0398 (14)
H16A0.75180.38240.24360.048*
C170.7130 (3)0.3912 (3)0.0463 (3)0.0555 (16)
H17A0.69640.33880.04130.083*
H17B0.76280.39940.02570.083*
H17C0.66010.42080.01500.083*
C180.7886 (4)0.4847 (2)0.1548 (3)0.0536 (15)
H18A0.80600.49230.21320.080*
H18B0.74710.52420.12600.080*
H18C0.84330.48550.13970.080*
C190.8004 (4)0.0875 (3)0.3649 (3)0.0493 (15)
H19A0.85450.10960.36290.059*
C200.8854 (4)0.0308 (3)0.3888 (3)0.0727 (19)
H20A0.93280.00120.38230.109*
H20B0.86890.06860.34650.109*
H20C0.90820.05460.44200.109*
C210.7238 (4)0.0250 (3)0.3849 (3)0.074 (2)
H21A0.67630.01060.38420.110*
H21B0.74040.05450.43450.110*
H21C0.70080.05760.33780.110*
C220.1741 (3)0.0613 (3)0.1342 (3)0.0325 (12)
C230.1256 (3)0.1623 (2)0.3479 (3)0.0297 (12)
C240.3185 (4)0.3642 (3)0.3215 (3)0.0420 (14)
C250.3606 (4)0.2789 (3)0.1597 (3)0.0421 (13)
H25A0.40150.28220.21390.050*
C260.4764 (3)0.3431 (3)0.1240 (3)0.0424 (13)
H26A0.50550.34500.18300.064*
H26B0.46850.39350.10220.064*
H26C0.51480.31490.10090.064*
C270.3291 (3)0.3023 (3)0.0172 (3)0.0440 (14)
H27A0.26590.29270.01280.066*
H27B0.35080.26190.00850.066*
H27C0.33220.34890.01000.066*
C280.3953 (3)0.1229 (3)0.3477 (3)0.0314 (12)
C290.0390 (4)0.2920 (3)0.1304 (3)0.0383 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0311 (4)0.0319 (4)0.0270 (5)0.0015 (4)0.0110 (4)0.0068 (4)
Mn10.0416 (5)0.0327 (4)0.0430 (5)0.0013 (4)0.0221 (4)0.0004 (5)
N10.026 (2)0.060 (3)0.051 (3)0.000 (2)0.016 (2)0.020 (3)
N20.043 (3)0.038 (3)0.034 (3)0.010 (2)0.011 (2)0.001 (2)
N30.041 (3)0.088 (3)0.036 (3)0.024 (3)0.025 (2)0.012 (3)
N40.042 (3)0.023 (2)0.028 (3)0.009 (2)0.006 (2)0.002 (2)
N60.033 (2)0.029 (2)0.045 (3)0.001 (2)0.012 (2)0.011 (2)
N70.028 (2)0.041 (2)0.026 (3)0.004 (2)0.009 (2)0.009 (2)
N80.029 (2)0.045 (3)0.028 (3)0.009 (2)0.012 (2)0.001 (2)
N90.049 (3)0.037 (3)0.037 (3)0.004 (2)0.010 (2)0.006 (2)
N100.036 (3)0.039 (3)0.030 (3)0.002 (2)0.018 (2)0.013 (2)
N110.038 (3)0.041 (3)0.030 (3)0.001 (2)0.014 (2)0.004 (2)
N120.042 (3)0.032 (3)0.033 (3)0.002 (2)0.014 (2)0.003 (2)
O10.043 (2)0.057 (2)0.051 (3)0.001 (2)0.027 (2)0.004 (2)
O20.049 (2)0.0298 (18)0.055 (3)0.0079 (19)0.021 (2)0.0002 (19)
O30.082 (3)0.059 (2)0.083 (3)0.003 (2)0.018 (3)0.047 (3)
O40.043 (2)0.055 (3)0.050 (3)0.011 (2)0.004 (2)0.007 (2)
O50.047 (2)0.048 (2)0.031 (2)0.011 (2)0.007 (2)0.0022 (19)
O60.034 (2)0.040 (2)0.053 (3)0.0068 (18)0.0061 (18)0.0076 (19)
O70.040 (2)0.0407 (19)0.041 (2)0.0003 (18)0.0208 (18)0.0063 (17)
S10.0461 (9)0.0402 (8)0.0479 (10)0.0033 (8)0.0047 (8)0.0079 (8)
S20.0556 (10)0.0605 (9)0.0643 (11)0.0111 (8)0.0410 (9)0.0229 (9)
S30.0703 (11)0.0513 (9)0.0672 (12)0.0134 (9)0.0169 (10)0.0068 (9)
S40.0452 (9)0.0624 (9)0.0395 (9)0.0171 (8)0.0008 (7)0.0036 (8)
S50.0514 (10)0.0932 (12)0.0425 (10)0.0329 (10)0.0104 (8)0.0002 (9)
C10.059 (3)0.084 (4)0.095 (4)0.006 (3)0.019 (3)0.003 (3)
C20.061 (4)0.088 (5)0.088 (5)0.001 (4)0.035 (4)0.036 (4)
C30.099 (4)0.053 (3)0.187 (6)0.004 (3)0.083 (4)0.008 (3)
C40.035 (3)0.043 (3)0.043 (4)0.001 (3)0.014 (3)0.008 (3)
C50.073 (3)0.087 (3)0.082 (4)0.012 (3)0.003 (3)0.001 (3)
C60.054 (4)0.058 (4)0.052 (4)0.004 (3)0.009 (3)0.002 (3)
N50.060 (3)0.051 (3)0.036 (3)0.011 (3)0.019 (3)0.009 (3)
C70.059 (3)0.084 (4)0.095 (4)0.006 (3)0.019 (3)0.003 (3)
C80.099 (4)0.053 (3)0.187 (6)0.004 (3)0.083 (4)0.008 (3)
C90.073 (3)0.087 (3)0.082 (4)0.012 (3)0.003 (3)0.001 (3)
C100.072 (4)0.024 (3)0.041 (4)0.003 (3)0.030 (3)0.012 (3)
C110.074 (4)0.061 (4)0.046 (4)0.032 (4)0.019 (3)0.008 (3)
C120.056 (4)0.046 (3)0.056 (4)0.009 (3)0.019 (3)0.001 (3)
C160.028 (3)0.055 (4)0.043 (4)0.010 (3)0.022 (3)0.005 (3)
C170.042 (3)0.068 (4)0.042 (4)0.012 (3)0.004 (3)0.010 (3)
C180.061 (4)0.029 (3)0.072 (4)0.002 (3)0.024 (3)0.004 (3)
C190.055 (4)0.041 (4)0.040 (4)0.019 (3)0.002 (3)0.008 (3)
C200.101 (5)0.055 (4)0.060 (5)0.010 (4)0.026 (4)0.009 (4)
C210.111 (6)0.062 (4)0.042 (4)0.035 (4)0.019 (4)0.001 (3)
C220.023 (3)0.048 (3)0.022 (3)0.006 (3)0.002 (2)0.011 (3)
C230.028 (3)0.029 (3)0.024 (3)0.009 (2)0.001 (2)0.002 (2)
C240.054 (4)0.041 (3)0.035 (4)0.003 (3)0.019 (3)0.010 (3)
C250.041 (3)0.031 (3)0.053 (4)0.003 (3)0.014 (3)0.004 (3)
C260.030 (3)0.055 (3)0.038 (3)0.007 (3)0.008 (3)0.001 (3)
C270.035 (3)0.056 (3)0.038 (4)0.006 (3)0.009 (3)0.008 (3)
C280.031 (3)0.036 (3)0.031 (3)0.002 (3)0.015 (3)0.005 (3)
C290.054 (4)0.035 (3)0.029 (3)0.011 (3)0.019 (3)0.002 (3)
Geometric parameters (Å, º) top
Cr1—N81.969 (4)C2—H2C0.9600
Cr1—N91.977 (4)C3—H3A0.9600
Cr1—N111.996 (4)C3—H3B0.9600
Cr1—O71.999 (3)C3—H3C0.9600
Cr1—N72.002 (4)C4—H4A0.9300
Cr1—N122.006 (4)C5—H5A0.9600
Mn1—O42.133 (4)C5—H5B0.9600
Mn1—O32.140 (4)C5—H5C0.9600
Mn1—O12.140 (3)C6—H6A0.9600
Mn1—O62.143 (3)C6—H6B0.9600
Mn1—O52.167 (3)C6—H6C0.9600
Mn1—O22.171 (3)N5—C191.329 (6)
N1—C11.340 (7)N5—C211.421 (6)
N1—C21.430 (6)N5—C201.460 (6)
N1—C31.432 (6)C7—H7A0.9300
N2—C41.290 (6)C8—H8A0.9600
N2—C61.428 (6)C8—H8B0.9600
N2—C51.488 (6)C8—H8C0.9600
N3—C71.326 (2)C9—H9A0.9600
N3—C81.444 (2)C9—H9B0.9600
N3—C91.451 (2)C9—H9C0.9600
N4—C101.334 (6)C10—H10A0.9300
N4—C121.428 (5)C11—H11A0.9600
N4—C111.434 (6)C11—H11B0.9600
N6—C161.328 (5)C11—H11C0.9600
N6—C181.432 (5)C12—H12A0.9600
N6—C171.457 (5)C12—H12B0.9600
N7—C221.174 (5)C12—H12C0.9600
N8—C231.142 (5)C16—H16A0.9300
N9—C241.174 (5)C17—H17A0.9600
N10—C251.284 (5)C17—H17B0.9600
N10—C271.440 (5)C17—H17C0.9600
N10—C261.441 (5)C18—H18A0.9600
N11—C281.162 (5)C18—H18B0.9600
N12—C291.136 (5)C18—H18C0.9600
O1—C11.213 (6)C19—H19A0.9300
O2—C41.270 (5)C20—H20A0.9600
O3—C71.242 (2)C20—H20B0.9600
O4—C101.223 (6)C20—H20C0.9600
O5—C191.238 (6)C21—H21A0.9600
O6—C161.254 (5)C21—H21B0.9600
O7—C251.260 (5)C21—H21C0.9600
S1—C221.618 (5)C25—H25A0.9300
S2—C231.649 (5)C26—H26A0.9600
S3—C241.642 (6)C26—H26B0.9600
S4—C281.642 (5)C26—H26C0.9600
S5—C291.626 (6)C27—H27A0.9600
C1—H1A0.9300C27—H27B0.9600
C2—H2A0.9600C27—H27C0.9600
C2—H2B0.9600
N8—Cr1—N992.83 (16)N2—C6—H6C109.5
N8—Cr1—N1190.52 (15)H6A—C6—H6C109.5
N9—Cr1—N1190.03 (16)H6B—C6—H6C109.5
N8—Cr1—O7176.41 (15)C19—N5—C21121.6 (5)
N9—Cr1—O789.51 (14)C19—N5—C20121.0 (5)
N11—Cr1—O792.20 (14)C21—N5—C20117.0 (5)
N8—Cr1—N791.22 (15)O3—C7—N3120.8 (5)
N9—Cr1—N7175.62 (15)O3—C7—H7A119.6
N11—Cr1—N788.27 (15)N3—C7—H7A119.6
O7—Cr1—N786.51 (13)N3—C8—H8A109.5
N8—Cr1—N1289.55 (15)N3—C8—H8B109.5
N9—Cr1—N1290.72 (16)H8A—C8—H8B109.5
N11—Cr1—N12179.24 (17)N3—C8—H8C109.5
O7—Cr1—N1287.70 (14)H8A—C8—H8C109.5
N7—Cr1—N1290.97 (15)H8B—C8—H8C109.5
O4—Mn1—O395.96 (14)N3—C9—H9A109.5
O4—Mn1—O187.26 (14)N3—C9—H9B109.5
O3—Mn1—O1173.81 (14)H9A—C9—H9B109.5
O4—Mn1—O684.69 (13)N3—C9—H9C109.5
O3—Mn1—O694.73 (14)H9A—C9—H9C109.5
O1—Mn1—O690.83 (12)H9B—C9—H9C109.5
O4—Mn1—O593.14 (13)O4—C10—N4125.3 (5)
O3—Mn1—O589.24 (15)O4—C10—H10A117.3
O1—Mn1—O585.29 (13)N4—C10—H10A117.3
O6—Mn1—O5175.64 (13)N4—C11—H11A109.5
O4—Mn1—O2174.71 (14)N4—C11—H11B109.5
O3—Mn1—O288.00 (13)H11A—C11—H11B109.5
O1—Mn1—O289.13 (12)N4—C11—H11C109.5
O6—Mn1—O291.51 (13)H11A—C11—H11C109.5
O5—Mn1—O290.41 (12)H11B—C11—H11C109.5
C1—N1—C2123.5 (5)N4—C12—H12A109.5
C1—N1—C3120.3 (4)N4—C12—H12B109.5
C2—N1—C3115.8 (4)H12A—C12—H12B109.5
C4—N2—C6123.5 (4)N4—C12—H12C109.5
C4—N2—C5120.7 (5)H12A—C12—H12C109.5
C6—N2—C5115.8 (4)H12B—C12—H12C109.5
C7—N3—C8140.2 (5)O6—C16—N6123.2 (5)
C7—N3—C9108.7 (4)O6—C16—H16A118.4
C8—N3—C9111.1 (4)N6—C16—H16A118.4
C10—N4—C12119.9 (4)N6—C17—H17A109.5
C10—N4—C11122.7 (4)N6—C17—H17B109.5
C12—N4—C11117.4 (4)H17A—C17—H17B109.5
C16—N6—C18122.2 (5)N6—C17—H17C109.5
C16—N6—C17120.4 (4)H17A—C17—H17C109.5
C18—N6—C17117.4 (4)H17B—C17—H17C109.5
C22—N7—Cr1173.3 (4)N6—C18—H18A109.5
C23—N8—Cr1173.6 (4)N6—C18—H18B109.5
C24—N9—Cr1164.1 (4)H18A—C18—H18B109.5
C25—N10—C27121.2 (4)N6—C18—H18C109.5
C25—N10—C26120.2 (4)H18A—C18—H18C109.5
C27—N10—C26118.5 (4)H18B—C18—H18C109.5
C28—N11—Cr1159.7 (4)O5—C19—N5125.4 (5)
C29—N12—Cr1171.1 (4)O5—C19—H19A117.3
C1—O1—Mn1132.7 (4)N5—C19—H19A117.3
C4—O2—Mn1124.3 (3)N5—C20—H20A109.5
C7—O3—Mn1137.7 (4)N5—C20—H20B109.5
C10—O4—Mn1149.2 (4)H20A—C20—H20B109.5
C19—O5—Mn1120.0 (3)N5—C20—H20C109.5
C16—O6—Mn1121.9 (3)H20A—C20—H20C109.5
C25—O7—Cr1127.3 (3)H20B—C20—H20C109.5
O1—C1—N1125.3 (6)N5—C21—H21A109.5
O1—C1—H1A117.4N5—C21—H21B109.5
N1—C1—H1A117.4H21A—C21—H21B109.5
N1—C2—H2A109.5N5—C21—H21C109.5
N1—C2—H2B109.5H21A—C21—H21C109.5
H2A—C2—H2B109.5H21B—C21—H21C109.5
N1—C2—H2C109.5N7—C22—S1179.7 (6)
H2A—C2—H2C109.5N8—C23—S2179.3 (4)
H2B—C2—H2C109.5N9—C24—S3176.3 (5)
N1—C3—H3A109.5O7—C25—N10124.6 (5)
N1—C3—H3B109.5O7—C25—H25A117.7
H3A—C3—H3B109.5N10—C25—H25A117.7
N1—C3—H3C109.5N10—C26—H26A109.5
H3A—C3—H3C109.5N10—C26—H26B109.5
H3B—C3—H3C109.5H26A—C26—H26B109.5
O2—C4—N2123.6 (5)N10—C26—H26C109.5
O2—C4—H4A118.2H26A—C26—H26C109.5
N2—C4—H4A118.2H26B—C26—H26C109.5
N2—C5—H5A109.5N10—C27—H27A109.5
N2—C5—H5B109.5N10—C27—H27B109.5
H5A—C5—H5B109.5H27A—C27—H27B109.5
N2—C5—H5C109.5N10—C27—H27C109.5
H5A—C5—H5C109.5H27A—C27—H27C109.5
H5B—C5—H5C109.5H27B—C27—H27C109.5
N2—C6—H6A109.5N11—C28—S4178.8 (4)
N2—C6—H6B109.5N12—C29—S5179.3 (5)
H6A—C6—H6B109.5
N8—Cr1—N9—C24150.7 (15)O3—Mn1—O6—C1665.4 (3)
N11—Cr1—N9—C2460.1 (15)O1—Mn1—O6—C16117.3 (3)
O7—Cr1—N9—C2432.1 (15)O2—Mn1—O6—C16153.5 (3)
N12—Cr1—N9—C24119.7 (15)N9—Cr1—O7—C2540.3 (4)
N8—Cr1—N11—C2817.6 (11)N11—Cr1—O7—C2549.7 (4)
N9—Cr1—N11—C28110.4 (11)N7—Cr1—O7—C25137.9 (4)
O7—Cr1—N11—C28160.1 (11)N12—Cr1—O7—C25131.0 (4)
N7—Cr1—N11—C2873.6 (11)Mn1—O1—C1—N1162.0 (4)
O4—Mn1—O1—C118.3 (5)C2—N1—C1—O1175.8 (6)
O6—Mn1—O1—C166.3 (5)C3—N1—C1—O13.7 (10)
O5—Mn1—O1—C1111.7 (5)Mn1—O2—C4—N2170.7 (3)
O2—Mn1—O1—C1157.8 (5)C6—N2—C4—O22.0 (7)
O3—Mn1—O2—C485.0 (3)C5—N2—C4—O2177.5 (4)
O1—Mn1—O2—C489.5 (3)Mn1—O3—C7—N3142.2 (4)
O6—Mn1—O2—C4179.7 (3)C8—N3—C7—O38.1 (11)
O5—Mn1—O2—C44.2 (3)C9—N3—C7—O3168.0 (5)
O4—Mn1—O3—C710.6 (6)Mn1—O4—C10—N4177.5 (4)
O6—Mn1—O3—C795.8 (6)C12—N4—C10—O41.0 (7)
O5—Mn1—O3—C782.5 (6)C11—N4—C10—O4179.5 (5)
O2—Mn1—O3—C7172.9 (6)Mn1—O6—C16—N6160.9 (3)
O3—Mn1—O4—C1055.6 (7)C18—N6—C16—O6179.7 (4)
O1—Mn1—O4—C10119.1 (7)C17—N6—C16—O62.2 (6)
O6—Mn1—O4—C10149.8 (7)Mn1—O5—C19—N5144.6 (4)
O5—Mn1—O4—C1034.0 (7)C21—N5—C19—O51.4 (8)
O4—Mn1—O5—C1954.4 (4)C20—N5—C19—O5173.6 (5)
O3—Mn1—O5—C19150.4 (4)Cr1—O7—C25—N10169.8 (3)
O1—Mn1—O5—C1932.6 (4)C27—N10—C25—O72.2 (7)
O2—Mn1—O5—C19121.7 (4)C26—N10—C25—O7179.5 (4)
O4—Mn1—O6—C1630.2 (3)Cr1—N12—C29—S577 (43)

Experimental details

Crystal data
Chemical formula[Mn(C3H7NO)6][Cr(NCS)5(C3H7NO)]
Mr909.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)15.327 (3), 17.742 (2), 17.278 (2)
β (°) 110.36 (2)
V3)4404.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.735, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
20206, 9620, 2863
Rint0.092
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.100, 0.67
No. of reflections9620
No. of parameters463
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.57

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cr1—N81.969 (4)Mn1—O42.133 (4)
Cr1—N91.977 (4)Mn1—O32.140 (4)
Cr1—N111.996 (4)Mn1—O12.140 (3)
Cr1—O71.999 (3)Mn1—O62.143 (3)
Cr1—N72.002 (4)Mn1—O52.167 (3)
Cr1—N122.006 (4)Mn1—O22.171 (3)
 

Acknowledgements

We thank Viktoriya V. Dyakonenko for the data collection.

References

First citationBencini, A., Cecconi, F., Ghilardi, C. A., Midollini, S., Nuzzi, F. N. & Orlandini, A. (1992). Inorg. Chem. 31, 5339–5342.  CSD CrossRef CAS Web of Science Google Scholar
First citationKhutornoi, V. A., Naumov, N. G., Mironov, Yu. V., Oeckler, O., Simon, A. & Fedorov, V. E. (2002). Russ. J. Coord. Chem. 28, 193–201.  Web of Science CrossRef Google Scholar
First citationMakhankova, V. G. (2011). Glob. J. Inorg. Chem. 2, 265–285.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds