organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E,2E)-2-Methyl-3-phenyl­acryl­aldehyde thio­semicarbazone

aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 9 May 2012; accepted 16 May 2012; online 23 May 2012)

In the crystal structure of the title compound, C11H13N3S, mol­ecules form centrosymmetric synthons with an R22(8) graph-set motif, linked by pairs of N—H⋯S hydrogen bonds. The synthons are connected through further N—H⋯S hydrogen bonds, extending the packing to form a two-dimensional network lying parallel to (001). In addition, C—H⋯π inter­actions are observed.

Related literature

For related compounds and their biological activity, see: Abid et al. (2008[Abid, M., Agarwal, S. M. & Azam, A. (2008). Eur. J. Med. 43 2035-2039.]); Finkielsztein et al. (2008[Finkielsztein, L. M., Castro, E. F., Fabián, L. E., Moltrasio, G. Y., Campos, R. H., Cavallaro, L. V. & Moglioni, A. G. (2008). Eur. J. Med. 43 1767—1773.]). For hydrogen bonding in thio­semicarbazones, see: Lima et al. (2002[Lima, G. M., Neto, J. L., Beraldo, H., Siebald, H. G. & Duncalf, D. J. (2002). J. Mol. Struct. 604 287—291.]); Allen et al. (1997[Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680-695.]). For the use of resonance-induced hydrogen bonding in supra­molecular chemistry, see: Kearney et al. (1998[Kearney, P. C., Fernandez, M. & Flygare, J. A. (1998). J. Org. Chem. 63, 196-200.]). For hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3S

  • Mr = 219.30

  • Orthorhombic, P b c a

  • a = 10.9165 (5) Å

  • b = 7.8150 (3) Å

  • c = 28.0390 (14) Å

  • V = 2392.08 (19) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.17 mm−1

  • T = 293 K

  • 0.51 × 0.06 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.763, Tmax = 1.000

  • 6973 measured reflections

  • 2241 independent reflections

  • 1644 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.04

  • 2241 reflections

  • 188 parameters

  • All H-atom parameters refined

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H11⋯S1i 0.89 (2) 2.49 (3) 3.359 (2) 167 (2)
N3—H12B⋯S1ii 0.85 (3) 2.55 (3) 3.386 (2) 169 (2)
C3—H3⋯Cg1iii 0.96 (3) 2.89 (3) 3.812 (3) 161 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, -y, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazones have been extensively studied due to their wide range of pharmacological activities, such as antituberculosis (Abid et al., 2008) and antiviral (Finkielsztein et al., 2008) activities. In this work we have synthesized and crystallized a new thiosemicarbazone (I). (Fig. 1)

The values of distances N(1)–N(2) length (1.381 (2) Å.) and the dihedral angle C(10)N(1)—N(2)—C(11) (176.32 (2) °) are similar to those found in CSD (Allen, 2002) for thiosemicarbazone systems [selected 371 hits, distance mean N—N is 1.374 Å and dihedral angle mean is 178.21 °]. According to this value —NH—C(S)—NH—N= moiety is planar and form a delocalized system, which is typical for this type of structures.

In general the molecular crystals of thiosemicarbazones are formed by hydrogen bonds interaction through –NH-C(S)-NH-N= fragment, forming in many cases synthons.(Lima et al., 2002). Even though that C=S···H—N hydrogen bond is weaker than its C=O···H—N analogue, the effective electronegativity of S is increased by conjugative interactions between C=S and the lone pair of one or more N substituents this effect is called resonance-induced hydrogen bonding at sulfur acceptor (Allen et al. 1997). This properties have been widely exploited in supramolecular chemistry, where it has been used as a building block for anion receptors (Kearney et al., 1998).

Centrosymmetric synthons (R22(8)) (Bernstein et al., 1995) are connected through N—H···S hydrogen bond to extend packing along the a axis (Fig 2). Intermolecular C—H···π interactions are also present in the crystal and contribute to stabilize the packing along c axis. (Fig.3).

Related literature top

For related compounds and their biological activity, see: Abid et al. (2008); Finkielsztein et al. (2008). For hydrogen bonding in thiosemicarbazones, see: Lima et al. (2002); Allen et al. (1997). For the use of resonance-induced hydrogen bonding in supramolecular chemistry, see: Kearney et al. (1998). For hydrogen-bond motifs, see Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A solution of trans-alfa-methylzimaldehyde (1.4619 g, 0.01 mol) and thiosemicarbazide (0.9144 g 0.01 mol) in absolute methanol (50 ml) was refluxed for 3 h in the presence of p-toluenesulfonic acid as catalyst, with continuous stirring. On cooling to room temperature the precipitate was filtered off, washed with copious cold methanol and dried in air. White single crystals of compound (I) were obtained after recrystallization from a solution in methanol.

Refinement top

All H atoms located at the difference Fourier maps and isotropically refined. At the end of the refinement the highest peak in the electron density was 0.199 eÅ -3, while the deepest hole was -0.153 eÅ -3.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Principal hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x+1/2, y+1/2, z; (ii) -x+1, -y, -z]
[Figure 3] Fig. 3. View of C—H···π interactions.
(1E,2E)-2-Methyl-3-phenylacrylaldehyde thiosemicarbazone top
Crystal data top
C11H13N3SF(000) = 928
Mr = 219.30Dx = 1.218 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2abCell parameters from 1905 reflections
a = 10.9165 (5) Åθ = 4.1–70.4°
b = 7.8150 (3) ŵ = 2.17 mm1
c = 28.0390 (14) ÅT = 293 K
V = 2392.08 (19) Å3Plates, white
Z = 80.51 × 0.06 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2241 independent reflections
Radiation source: Enhance (Cu) X-ray Source1644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 10.2673 pixels mm-1θmax = 70.5°, θmin = 5.1°
ω scansh = 913
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 98
Tmin = 0.763, Tmax = 1.000l = 2534
6973 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.029P]
where P = (Fo2 + 2Fc2)/3
2241 reflections(Δ/σ)max < 0.001
188 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C11H13N3SV = 2392.08 (19) Å3
Mr = 219.30Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 10.9165 (5) ŵ = 2.17 mm1
b = 7.8150 (3) ÅT = 293 K
c = 28.0390 (14) Å0.51 × 0.06 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2241 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1644 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 1.000Rint = 0.037
6973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110All H-atom parameters refined
S = 1.04Δρmax = 0.20 e Å3
2241 reflectionsΔρmin = 0.15 e Å3
188 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2010), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33592 (5)0.16055 (7)0.01929 (2)0.0596 (2)
N20.37558 (17)0.4229 (2)0.03717 (7)0.0586 (5)
N10.44022 (15)0.5101 (2)0.07187 (6)0.0561 (4)
C110.41598 (18)0.2686 (2)0.02261 (7)0.0511 (5)
C70.4125 (2)0.9191 (3)0.12626 (8)0.0584 (5)
N30.51732 (19)0.2120 (3)0.04238 (9)0.0692 (6)
C100.4010 (2)0.6596 (3)0.08224 (8)0.0564 (5)
C80.46045 (18)0.7642 (3)0.11791 (7)0.0541 (5)
C60.4535 (2)1.0540 (3)0.15896 (7)0.0573 (5)
C50.3674 (3)1.1629 (3)0.17910 (10)0.0713 (6)
C10.5758 (2)1.0833 (4)0.17014 (10)0.0727 (7)
C90.5700 (3)0.6891 (4)0.14221 (11)0.0764 (7)
C40.4017 (3)1.2909 (4)0.21045 (11)0.0848 (8)
C30.5221 (3)1.3141 (4)0.22186 (11)0.0890 (9)
C20.6085 (3)1.2116 (4)0.20136 (11)0.0883 (9)
H110.311 (2)0.471 (3)0.0232 (8)0.067 (7)*
H12A0.557 (2)0.274 (3)0.0641 (10)0.082 (8)*
H70.339 (2)0.944 (3)0.1080 (9)0.069 (7)*
H100.332 (2)0.702 (3)0.0649 (8)0.059 (6)*
H9C0.641 (3)0.715 (4)0.1228 (13)0.114 (12)*
H50.285 (2)1.146 (3)0.1724 (9)0.081 (8)*
H9B0.581 (2)0.740 (3)0.1745 (11)0.089 (8)*
H9A0.562 (3)0.579 (5)0.1461 (12)0.125 (13)*
H10.635 (2)1.014 (3)0.1560 (9)0.076 (8)*
H20.690 (3)1.220 (4)0.2086 (11)0.100 (10)*
H12B0.546 (3)0.116 (4)0.0339 (9)0.080 (8)*
H40.341 (2)1.358 (4)0.2224 (10)0.090 (9)*
H30.541 (3)1.403 (4)0.2441 (11)0.098 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0531 (3)0.0536 (3)0.0720 (4)0.0009 (2)0.0050 (3)0.0083 (3)
N20.0521 (10)0.0481 (9)0.0756 (12)0.0041 (8)0.0070 (9)0.0064 (9)
N10.0550 (9)0.0481 (9)0.0652 (10)0.0033 (8)0.0018 (9)0.0002 (8)
C110.0478 (10)0.0436 (10)0.0621 (12)0.0031 (8)0.0106 (10)0.0031 (9)
C70.0551 (12)0.0570 (12)0.0630 (13)0.0016 (10)0.0047 (11)0.0018 (10)
N30.0636 (12)0.0543 (11)0.0898 (15)0.0106 (10)0.0142 (11)0.0096 (11)
C100.0531 (11)0.0504 (11)0.0656 (13)0.0009 (10)0.0041 (10)0.0010 (10)
C80.0543 (11)0.0526 (11)0.0553 (11)0.0041 (9)0.0007 (9)0.0026 (10)
C60.0696 (13)0.0494 (11)0.0528 (11)0.0034 (10)0.0004 (10)0.0014 (9)
C50.0783 (16)0.0580 (13)0.0776 (16)0.0026 (13)0.0002 (13)0.0036 (12)
C10.0691 (15)0.0744 (16)0.0744 (15)0.0148 (13)0.0067 (13)0.0121 (13)
C90.088 (2)0.0678 (17)0.0732 (17)0.0101 (15)0.0213 (16)0.0001 (14)
C40.109 (2)0.0639 (15)0.0818 (18)0.0019 (16)0.0199 (18)0.0136 (14)
C30.123 (3)0.0752 (17)0.0687 (16)0.0288 (18)0.0133 (17)0.0170 (14)
C20.088 (2)0.095 (2)0.0817 (18)0.0314 (17)0.0004 (17)0.0151 (16)
Geometric parameters (Å, º) top
S1—C111.690 (2)C6—C51.388 (3)
N2—C111.347 (3)C6—C11.390 (3)
N2—N11.381 (2)C5—C41.384 (4)
N2—H110.89 (2)C5—H50.93 (3)
N1—C101.278 (3)C1—C21.378 (4)
C11—N31.314 (3)C1—H10.93 (3)
C7—C81.339 (3)C9—H9C0.97 (3)
C7—C61.467 (3)C9—H9B1.00 (3)
C7—H70.97 (2)C9—H9A0.87 (4)
N3—H12A0.89 (3)C4—C31.364 (5)
N3—H12B0.85 (3)C4—H40.91 (3)
C10—C81.446 (3)C3—C21.365 (4)
C10—H100.96 (2)C3—H30.96 (3)
C8—C91.497 (3)C2—H20.92 (3)
C11—N2—N1119.17 (18)C4—C5—C6121.2 (3)
C11—N2—H11120.1 (15)C4—C5—H5119.7 (17)
N1—N2—H11120.5 (15)C6—C5—H5119.1 (16)
C10—N1—N2116.09 (17)C2—C1—C6120.8 (3)
N3—C11—N2116.7 (2)C2—C1—H1120.9 (16)
N3—C11—S1124.07 (17)C6—C1—H1118.3 (16)
N2—C11—S1119.25 (16)C8—C9—H9C108 (2)
C8—C7—C6129.7 (2)C8—C9—H9B110.5 (16)
C8—C7—H7114.3 (14)H9C—C9—H9B109 (3)
C6—C7—H7116.0 (14)C8—C9—H9A111 (2)
C11—N3—H12A121.2 (17)H9C—C9—H9A111 (3)
C11—N3—H12B119.2 (18)H9B—C9—H9A107 (3)
H12A—N3—H12B120 (3)C3—C4—C5120.4 (3)
N1—C10—C8121.6 (2)C3—C4—H4122.7 (18)
N1—C10—H10117.6 (13)C5—C4—H4116.9 (18)
C8—C10—H10120.7 (13)C2—C3—C4119.3 (3)
C7—C8—C10117.15 (19)C2—C3—H3123.5 (18)
C7—C8—C9126.0 (2)C4—C3—H3117.3 (18)
C10—C8—C9116.9 (2)C3—C2—C1121.1 (3)
C5—C6—C1117.2 (2)C3—C2—H2122.4 (19)
C5—C6—C7119.2 (2)C1—C2—H2116 (2)
C1—C6—C7123.5 (2)
C11—N2—N1—C10176.32 (19)C8—C7—C6—C5149.4 (2)
N1—N2—C11—N31.0 (3)C8—C7—C6—C132.5 (4)
N1—N2—C11—N31.0 (3)C1—C6—C5—C42.4 (4)
N1—N2—C11—S1179.15 (14)C7—C6—C5—C4179.4 (2)
N1—N2—C11—S1179.15 (14)C5—C6—C1—C22.3 (4)
N2—N1—C10—C8179.95 (18)C7—C6—C1—C2179.6 (2)
C6—C7—C8—C10178.3 (2)C6—C5—C4—C30.8 (4)
C6—C7—C8—C91.8 (4)C5—C4—C3—C21.1 (5)
N1—C10—C8—C7180.0 (2)C4—C3—C2—C11.3 (5)
N1—C10—C8—C90.1 (3)C6—C1—C2—C30.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H11···S1i0.89 (2)2.49 (3)3.359 (2)167 (2)
N3—H12B···S1ii0.85 (3)2.55 (3)3.386 (2)169 (2)
C3—H3···Cg1iii0.96 (3)2.89 (3)3.812 (3)161 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13N3S
Mr219.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.9165 (5), 7.8150 (3), 28.0390 (14)
V3)2392.08 (19)
Z8
Radiation typeCu Kα
µ (mm1)2.17
Crystal size (mm)0.51 × 0.06 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.763, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6973, 2241, 1644
Rint0.037
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.04
No. of reflections2241
No. of parameters188
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H11···S1i0.89 (2)2.49 (3)3.359 (2)167 (2)
N3—H12B···S1ii0.85 (3)2.55 (3)3.386 (2)169 (2)
C3—H3···Cg1iii0.96 (3)2.89 (3)3.812 (3)161 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

We acknowledge financial support by the Agencia Española de Cooperación Inter­nacional y Desarrollo (AECID), FEDER funding and the Spanish MINECO (MAT2006–01997, MAT2010-15094 and the Factoría de Cristalización Consolider Ingenio 2010).

References

First citationAbid, M., Agarwal, S. M. & Azam, A. (2008). Eur. J. Med. 43 2035–2039.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680–695.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFinkielsztein, L. M., Castro, E. F., Fabián, L. E., Moltrasio, G. Y., Campos, R. H., Cavallaro, L. V. & Moglioni, A. G. (2008). Eur. J. Med. 43 1767—1773.  Web of Science CrossRef Google Scholar
First citationKearney, P. C., Fernandez, M. & Flygare, J. A. (1998). J. Org. Chem. 63, 196–200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLima, G. M., Neto, J. L., Beraldo, H., Siebald, H. G. & Duncalf, D. J. (2002). J. Mol. Struct. 604 287—291.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds