organic compounds
(1E,2E)-2-Methyl-3-phenylacrylaldehyde thiosemicarbazone
aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain
*Correspondence e-mail: sgg@uniovi.es
In the 11H13N3S, molecules form centrosymmetric synthons with an R22(8) graph-set motif, linked by pairs of N—H⋯S hydrogen bonds. The synthons are connected through further N—H⋯S hydrogen bonds, extending the packing to form a two-dimensional network lying parallel to (001). In addition, C—H⋯π interactions are observed.
of the title compound, CRelated literature
For related compounds and their biological activity, see: Abid et al. (2008); Finkielsztein et al. (2008). For hydrogen bonding in thiosemicarbazones, see: Lima et al. (2002); Allen et al. (1997). For the use of resonance-induced hydrogen bonding in supramolecular chemistry, see: Kearney et al. (1998). For hydrogen-bond motifs, see Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812022386/ff2068sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812022386/ff2068Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812022386/ff2068Isup3.cml
A solution of trans-alfa-methylzimaldehyde (1.4619 g, 0.01 mol) and thiosemicarbazide (0.9144 g 0.01 mol) in absolute methanol (50 ml) was refluxed for 3 h in the presence of p-toluenesulfonic acid as catalyst, with continuous stirring. On cooling to room temperature the precipitate was filtered off, washed with copious cold methanol and dried in air. White single crystals of compound (I) were obtained after recrystallization from a solution in methanol.
All H atoms located at the difference Fourier maps and isotropically refined. At the end of the
the highest peak in the electron density was 0.199 eÅ -3, while the deepest hole was -0.153 eÅ -3.Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell
CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).C11H13N3S | F(000) = 928 |
Mr = 219.30 | Dx = 1.218 Mg m−3 |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 1905 reflections |
a = 10.9165 (5) Å | θ = 4.1–70.4° |
b = 7.8150 (3) Å | µ = 2.17 mm−1 |
c = 28.0390 (14) Å | T = 293 K |
V = 2392.08 (19) Å3 | Plates, white |
Z = 8 | 0.51 × 0.06 × 0.04 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2241 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1644 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 10.2673 pixels mm-1 | θmax = 70.5°, θmin = 5.1° |
ω scans | h = −9→13 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | k = −9→8 |
Tmin = 0.763, Tmax = 1.000 | l = −25→34 |
6973 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0544P)2 + 0.029P] where P = (Fo2 + 2Fc2)/3 |
2241 reflections | (Δ/σ)max < 0.001 |
188 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C11H13N3S | V = 2392.08 (19) Å3 |
Mr = 219.30 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 10.9165 (5) Å | µ = 2.17 mm−1 |
b = 7.8150 (3) Å | T = 293 K |
c = 28.0390 (14) Å | 0.51 × 0.06 × 0.04 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2241 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | 1644 reflections with I > 2σ(I) |
Tmin = 0.763, Tmax = 1.000 | Rint = 0.037 |
6973 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.110 | All H-atom parameters refined |
S = 1.04 | Δρmax = 0.20 e Å−3 |
2241 reflections | Δρmin = −0.15 e Å−3 |
188 parameters |
Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2010), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.33592 (5) | 0.16055 (7) | 0.01929 (2) | 0.0596 (2) | |
N2 | 0.37558 (17) | 0.4229 (2) | −0.03717 (7) | 0.0586 (5) | |
N1 | 0.44022 (15) | 0.5101 (2) | −0.07187 (6) | 0.0561 (4) | |
C11 | 0.41598 (18) | 0.2686 (2) | −0.02261 (7) | 0.0511 (5) | |
C7 | 0.4125 (2) | 0.9191 (3) | −0.12626 (8) | 0.0584 (5) | |
N3 | 0.51732 (19) | 0.2120 (3) | −0.04238 (9) | 0.0692 (6) | |
C10 | 0.4010 (2) | 0.6596 (3) | −0.08224 (8) | 0.0564 (5) | |
C8 | 0.46045 (18) | 0.7642 (3) | −0.11791 (7) | 0.0541 (5) | |
C6 | 0.4535 (2) | 1.0540 (3) | −0.15896 (7) | 0.0573 (5) | |
C5 | 0.3674 (3) | 1.1629 (3) | −0.17910 (10) | 0.0713 (6) | |
C1 | 0.5758 (2) | 1.0833 (4) | −0.17014 (10) | 0.0727 (7) | |
C9 | 0.5700 (3) | 0.6891 (4) | −0.14221 (11) | 0.0764 (7) | |
C4 | 0.4017 (3) | 1.2909 (4) | −0.21045 (11) | 0.0848 (8) | |
C3 | 0.5221 (3) | 1.3141 (4) | −0.22186 (11) | 0.0890 (9) | |
C2 | 0.6085 (3) | 1.2116 (4) | −0.20136 (11) | 0.0883 (9) | |
H11 | 0.311 (2) | 0.471 (3) | −0.0232 (8) | 0.067 (7)* | |
H12A | 0.557 (2) | 0.274 (3) | −0.0641 (10) | 0.082 (8)* | |
H7 | 0.339 (2) | 0.944 (3) | −0.1080 (9) | 0.069 (7)* | |
H10 | 0.332 (2) | 0.702 (3) | −0.0649 (8) | 0.059 (6)* | |
H9C | 0.641 (3) | 0.715 (4) | −0.1228 (13) | 0.114 (12)* | |
H5 | 0.285 (2) | 1.146 (3) | −0.1724 (9) | 0.081 (8)* | |
H9B | 0.581 (2) | 0.740 (3) | −0.1745 (11) | 0.089 (8)* | |
H9A | 0.562 (3) | 0.579 (5) | −0.1461 (12) | 0.125 (13)* | |
H1 | 0.635 (2) | 1.014 (3) | −0.1560 (9) | 0.076 (8)* | |
H2 | 0.690 (3) | 1.220 (4) | −0.2086 (11) | 0.100 (10)* | |
H12B | 0.546 (3) | 0.116 (4) | −0.0339 (9) | 0.080 (8)* | |
H4 | 0.341 (2) | 1.358 (4) | −0.2224 (10) | 0.090 (9)* | |
H3 | 0.541 (3) | 1.403 (4) | −0.2441 (11) | 0.098 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0531 (3) | 0.0536 (3) | 0.0720 (4) | −0.0009 (2) | −0.0050 (3) | 0.0083 (3) |
N2 | 0.0521 (10) | 0.0481 (9) | 0.0756 (12) | 0.0041 (8) | 0.0070 (9) | 0.0064 (9) |
N1 | 0.0550 (9) | 0.0481 (9) | 0.0652 (10) | −0.0033 (8) | 0.0018 (9) | 0.0002 (8) |
C11 | 0.0478 (10) | 0.0436 (10) | 0.0621 (12) | −0.0031 (8) | −0.0106 (10) | −0.0031 (9) |
C7 | 0.0551 (12) | 0.0570 (12) | 0.0630 (13) | −0.0016 (10) | 0.0047 (11) | 0.0018 (10) |
N3 | 0.0636 (12) | 0.0543 (11) | 0.0898 (15) | 0.0106 (10) | 0.0142 (11) | 0.0096 (11) |
C10 | 0.0531 (11) | 0.0504 (11) | 0.0656 (13) | 0.0009 (10) | 0.0041 (10) | 0.0010 (10) |
C8 | 0.0543 (11) | 0.0526 (11) | 0.0553 (11) | −0.0041 (9) | −0.0007 (9) | −0.0026 (10) |
C6 | 0.0696 (13) | 0.0494 (11) | 0.0528 (11) | −0.0034 (10) | −0.0004 (10) | −0.0014 (9) |
C5 | 0.0783 (16) | 0.0580 (13) | 0.0776 (16) | 0.0026 (13) | −0.0002 (13) | 0.0036 (12) |
C1 | 0.0691 (15) | 0.0744 (16) | 0.0744 (15) | −0.0148 (13) | −0.0067 (13) | 0.0121 (13) |
C9 | 0.088 (2) | 0.0678 (17) | 0.0732 (17) | 0.0101 (15) | 0.0213 (16) | −0.0001 (14) |
C4 | 0.109 (2) | 0.0639 (15) | 0.0818 (18) | 0.0019 (16) | −0.0199 (18) | 0.0136 (14) |
C3 | 0.123 (3) | 0.0752 (17) | 0.0687 (16) | −0.0288 (18) | −0.0133 (17) | 0.0170 (14) |
C2 | 0.088 (2) | 0.095 (2) | 0.0817 (18) | −0.0314 (17) | 0.0004 (17) | 0.0151 (16) |
S1—C11 | 1.690 (2) | C6—C5 | 1.388 (3) |
N2—C11 | 1.347 (3) | C6—C1 | 1.390 (3) |
N2—N1 | 1.381 (2) | C5—C4 | 1.384 (4) |
N2—H11 | 0.89 (2) | C5—H5 | 0.93 (3) |
N1—C10 | 1.278 (3) | C1—C2 | 1.378 (4) |
C11—N3 | 1.314 (3) | C1—H1 | 0.93 (3) |
C7—C8 | 1.339 (3) | C9—H9C | 0.97 (3) |
C7—C6 | 1.467 (3) | C9—H9B | 1.00 (3) |
C7—H7 | 0.97 (2) | C9—H9A | 0.87 (4) |
N3—H12A | 0.89 (3) | C4—C3 | 1.364 (5) |
N3—H12B | 0.85 (3) | C4—H4 | 0.91 (3) |
C10—C8 | 1.446 (3) | C3—C2 | 1.365 (4) |
C10—H10 | 0.96 (2) | C3—H3 | 0.96 (3) |
C8—C9 | 1.497 (3) | C2—H2 | 0.92 (3) |
C11—N2—N1 | 119.17 (18) | C4—C5—C6 | 121.2 (3) |
C11—N2—H11 | 120.1 (15) | C4—C5—H5 | 119.7 (17) |
N1—N2—H11 | 120.5 (15) | C6—C5—H5 | 119.1 (16) |
C10—N1—N2 | 116.09 (17) | C2—C1—C6 | 120.8 (3) |
N3—C11—N2 | 116.7 (2) | C2—C1—H1 | 120.9 (16) |
N3—C11—S1 | 124.07 (17) | C6—C1—H1 | 118.3 (16) |
N2—C11—S1 | 119.25 (16) | C8—C9—H9C | 108 (2) |
C8—C7—C6 | 129.7 (2) | C8—C9—H9B | 110.5 (16) |
C8—C7—H7 | 114.3 (14) | H9C—C9—H9B | 109 (3) |
C6—C7—H7 | 116.0 (14) | C8—C9—H9A | 111 (2) |
C11—N3—H12A | 121.2 (17) | H9C—C9—H9A | 111 (3) |
C11—N3—H12B | 119.2 (18) | H9B—C9—H9A | 107 (3) |
H12A—N3—H12B | 120 (3) | C3—C4—C5 | 120.4 (3) |
N1—C10—C8 | 121.6 (2) | C3—C4—H4 | 122.7 (18) |
N1—C10—H10 | 117.6 (13) | C5—C4—H4 | 116.9 (18) |
C8—C10—H10 | 120.7 (13) | C2—C3—C4 | 119.3 (3) |
C7—C8—C10 | 117.15 (19) | C2—C3—H3 | 123.5 (18) |
C7—C8—C9 | 126.0 (2) | C4—C3—H3 | 117.3 (18) |
C10—C8—C9 | 116.9 (2) | C3—C2—C1 | 121.1 (3) |
C5—C6—C1 | 117.2 (2) | C3—C2—H2 | 122.4 (19) |
C5—C6—C7 | 119.2 (2) | C1—C2—H2 | 116 (2) |
C1—C6—C7 | 123.5 (2) | ||
C11—N2—N1—C10 | −176.32 (19) | C8—C7—C6—C5 | 149.4 (2) |
N1—N2—C11—N3 | 1.0 (3) | C8—C7—C6—C1 | −32.5 (4) |
N1—N2—C11—N3 | 1.0 (3) | C1—C6—C5—C4 | 2.4 (4) |
N1—N2—C11—S1 | −179.15 (14) | C7—C6—C5—C4 | −179.4 (2) |
N1—N2—C11—S1 | −179.15 (14) | C5—C6—C1—C2 | −2.3 (4) |
N2—N1—C10—C8 | 179.95 (18) | C7—C6—C1—C2 | 179.6 (2) |
C6—C7—C8—C10 | 178.3 (2) | C6—C5—C4—C3 | −0.8 (4) |
C6—C7—C8—C9 | −1.8 (4) | C5—C4—C3—C2 | −1.1 (5) |
N1—C10—C8—C7 | 180.0 (2) | C4—C3—C2—C1 | 1.3 (5) |
N1—C10—C8—C9 | 0.1 (3) | C6—C1—C2—C3 | 0.5 (5) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H11···S1i | 0.89 (2) | 2.49 (3) | 3.359 (2) | 167 (2) |
N3—H12B···S1ii | 0.85 (3) | 2.55 (3) | 3.386 (2) | 169 (2) |
C3—H3···Cg1iii | 0.96 (3) | 2.89 (3) | 3.812 (3) | 161 (3) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1, −y, −z; (iii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H13N3S |
Mr | 219.30 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 10.9165 (5), 7.8150 (3), 28.0390 (14) |
V (Å3) | 2392.08 (19) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 2.17 |
Crystal size (mm) | 0.51 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.763, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6973, 2241, 1644 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.611 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.110, 1.04 |
No. of reflections | 2241 |
No. of parameters | 188 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.20, −0.15 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H11···S1i | 0.89 (2) | 2.49 (3) | 3.359 (2) | 167 (2) |
N3—H12B···S1ii | 0.85 (3) | 2.55 (3) | 3.386 (2) | 169 (2) |
C3—H3···Cg1iii | 0.96 (3) | 2.89 (3) | 3.812 (3) | 161 (3) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1, −y, −z; (iii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We acknowledge financial support by the Agencia Española de Cooperación Internacional y Desarrollo (AECID), FEDER funding and the Spanish MINECO (MAT2006–01997, MAT2010-15094 and the Factoría de Cristalización Consolider Ingenio 2010).
References
Abid, M., Agarwal, S. M. & Azam, A. (2008). Eur. J. Med. 43 2035–2039. Web of Science CrossRef CAS Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680–695. CrossRef CAS Web of Science IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Finkielsztein, L. M., Castro, E. F., Fabián, L. E., Moltrasio, G. Y., Campos, R. H., Cavallaro, L. V. & Moglioni, A. G. (2008). Eur. J. Med. 43 1767—1773. Web of Science CrossRef Google Scholar
Kearney, P. C., Fernandez, M. & Flygare, J. A. (1998). J. Org. Chem. 63, 196–200. Web of Science CrossRef PubMed CAS Google Scholar
Lima, G. M., Neto, J. L., Beraldo, H., Siebald, H. G. & Duncalf, D. J. (2002). J. Mol. Struct. 604 287—291. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazones have been extensively studied due to their wide range of pharmacological activities, such as antituberculosis (Abid et al., 2008) and antiviral (Finkielsztein et al., 2008) activities. In this work we have synthesized and crystallized a new thiosemicarbazone (I). (Fig. 1)
The values of distances N(1)–N(2) length (1.381 (2) Å.) and the dihedral angle C(10)═N(1)—N(2)—C(11) (176.32 (2) °) are similar to those found in CSD (Allen, 2002) for thiosemicarbazone systems [selected 371 hits, distance mean N—N is 1.374 Å and dihedral angle mean is 178.21 °]. According to this value —NH—C(S)—NH—N= moiety is planar and form a delocalized system, which is typical for this type of structures.
In general the molecular crystals of thiosemicarbazones are formed by hydrogen bonds interaction through –NH-C(S)-NH-N= fragment, forming in many cases synthons.(Lima et al., 2002). Even though that C=S···H—N hydrogen bond is weaker than its C=O···H—N analogue, the effective electronegativity of S is increased by conjugative interactions between C=S and the lone pair of one or more N substituents this effect is called resonance-induced hydrogen bonding at sulfur acceptor (Allen et al. 1997). This properties have been widely exploited in supramolecular chemistry, where it has been used as a building block for anion receptors (Kearney et al., 1998).
Centrosymmetric synthons (R22(8)) (Bernstein et al., 1995) are connected through N—H···S hydrogen bond to extend packing along the a axis (Fig 2). Intermolecular C—H···π interactions are also present in the crystal and contribute to stabilize the packing along c axis. (Fig.3).